Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neurochem ; 160(4): 454-468, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34919270

RESUMEN

There is increasing evidence for a daily rhythm of µ-opioid receptor (MOR) efficacy and the development of alcohol dependence. Previous studies show that ß-arrestin 2 (bArr2) has an impact on alcohol intake, at least partially mediated via modulation of MOR signaling, which in turn mediates the alcohol rewarding effects. Considering the interplay of circadian rhythms on MOR and alcohol dependence, we aimed to investigate bArr2 in alcohol dependence at different time points of the day/light cycle on the level of bArr2 mRNA (in situ hybridization), MOR availability (receptor autoradiography), and MOR signaling (Damgo-stimulated G-protein coupling) in the nucleus accumbens of alcohol-dependent and non-dependent Wistar rats. Using a microarray data set we found that bArr2, but not bArr1, shows a diurnal transcription pattern in the accumbens of naïve rats with higher expression levels during the active cycle. In 3-week abstinent rats, bArr2 is up-regulated in the accumbens at the beginning of the active cycle (ZT15), whereas no differences were found at the beginning of the inactive cycle (ZT3) compared with controls. This effect was accompanied by a specific down-regulation of MOR binding in the active cycle. Additionally, we detect a higher receptor coupling during the inactive cycle compared with the active cycle in alcohol-dependent animals. Together, we report daily rhythmicity for bArr2 expression linked to an inverse pattern of MOR, suggesting an involvement for bArr2 on circadian regulation of G-protein coupled receptors in alcohol dependence. The presented data may have implications for the development of novel bArr2-related treatment targets for alcoholism.


Asunto(s)
Alcoholismo/genética , Ritmo Circadiano/genética , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/genética , Arrestina beta 2/genética , Alcoholismo/tratamiento farmacológico , Animales , Regulación hacia Abajo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Masculino , Análisis por Micromatrices , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Recompensa
2.
Mol Psychiatry ; 26(11): 6482-6504, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34021263

RESUMEN

Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Hipocampo/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Conducta Social
3.
Cell Tissue Res ; 383(1): 581-595, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33515293

RESUMEN

Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.


Asunto(s)
Trastorno Autístico/genética , Receptores Odorantes/fisiología , Animales , Humanos , Ratones , Neuronas
4.
Annu Rev Neurosci ; 33: 131-49, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20572770

RESUMEN

Although the lifelong addition of new neurons to the olfactory bulb and dentate gyrus of mammalian brains is by now an accepted fact, the function of adult-generated neurons still largely remains a mystery. The ability of new neurons to form synapses with preexisting neurons without disrupting circuit function is central to the hypothesized role of adult neurogenesis as a substrate for learning and memory. With the development of several new genetic labeling and imaging techniques, the study of synapse development and integration of these new neurons into mature circuits both in vitro and in vivo is rapidly advancing our insight into their structural plasticity. Investigators' observation of synaptogenesis occurring in the adult brain is beginning to shed light on the flexibility that adult neurogenesis offers to mature circuits and the potential contribution of the transient plasticity that new neurons provide toward circuit refinement and adaptation to changing environmental demands.


Asunto(s)
Giro Dentado/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Adaptación Fisiológica/fisiología , Animales , Giro Dentado/citología , Humanos , Bulbo Olfatorio/citología
5.
Development ; 142(2): 303-13, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25519243

RESUMEN

New granule cell neurons (GCs) generated in the neonatal and adult subventricular zone (SVZ) have distinct patterns of input synapses in their dendritic domains. These synaptic input patterns determine the computations that the neurons eventually perform in the olfactory bulb. We observed that GCs generated earlier in postnatal life had acquired an 'adult' synaptic development only in one dendritic domain, and only later-born GCs showed an 'adult' synaptic development in both dendritic domains. It is unknown to what extent the distinct synaptic input patterns are already determined in SVZ progenitors and/or by the brain circuit into which neurons integrate. To distinguish these possibilities, we heterochronically transplanted retrovirally labeled SVZ progenitor cells. Once these transplanted progenitors, which mainly expressed Mash1, had differentiated into GCs, their glutamatergic input synapses were visualized by genetic tags. We observed that GCs derived from neonatal progenitors differentiating in the adult maintained their characteristic neonatal synapse densities. Grafting of adult SVZ progenitors to the neonate had a different outcome. These GCs formed synaptic densities that corresponded to neither adult nor neonatal patterns in two dendritic domains. In summary, progenitors in the neonatal and adult brain generate distinct GC populations and switch their fate to generate neurons with specific synaptic input patterns. Once they switch, adult progenitors require specific properties of the circuit to maintain their characteristic synaptic input patterns. Such determination of synaptic input patterns already at the progenitor-cell level may be exploited for brain repair to engineer neurons with defined wiring patterns.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Ventrículos Laterales/citología , Células-Madre Neurales/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre
6.
Cell Mol Life Sci ; 74(5): 849-867, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27695873

RESUMEN

The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.


Asunto(s)
Mamíferos/fisiología , Red Nerviosa/fisiología , Neurogénesis , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Humanos , Transcripción Genética
8.
J Neurosci ; 35(27): 9946-56, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156995

RESUMEN

Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of <1 s. Compatible with predictions of dynamic value assignment, the synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum.


Asunto(s)
Cuerpo Estriado/citología , Dopaminérgicos/farmacología , Dopamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Sensación/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Vías Aferentes/efectos de los fármacos , Animales , Channelrhodopsins , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Rayos Láser , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/genética , Neuronas/fisiología , Odorantes , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sensación/genética , Factores de Tiempo
9.
J Neurosci ; 34(35): 11549-59, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25164653

RESUMEN

Phasic increases in dopamine (DA) are involved in the detection and selection of relevant sensory stimuli. The DAergic and cholinergic system dynamically interact to gate and potentiate sensory inputs to striatum. Striatal cholinergic interneurons (CINs) respond to relevant sensory stimuli with an initial burst, a firing pause, or a late burst, or a combination of these three components. CIN responses coincide with phasic firing of DAergic neurons in vivo. In particular, the late burst of CINs codes for the anticipated reward. To examine whether DAergic midbrain afferents can evoke the different CIN responses, we recorded from adult olfactory tubercle slices in the mouse ventral striatum. Olfactory inputs to striatal projection neurons were gated by the cholinergic tone. Phasic optogenetic activation of DAergic terminals evoked combinations of initial bursts, pauses, and late bursts in subsets of CINs by distinct receptor pathways. Glutamate release from midbrain afferents evoked an NMDAR-dependent initial burst followed by an afterhyperpolarization-induced pause. Phasic release of DA itself evoked acute changes in CIN firing. In particular, in CINs without an initial burst, phasic DA release evoked a pause through D2-type DA receptor activation. Independently, phasic DA activated a slow depolarizing conductance and the late burst through a D1-type DA receptor pathway. In summary, DAergic neurons elicit transient subsecond firing responses in CINs by sequential activation of NMDA, D2-type, and D1-type receptors. This fast control of striatal cholinergic tone by phasic DA provides a novel dynamic link of two transmitter systems central to the detection and selection of relevant stimuli.


Asunto(s)
Neuronas Colinérgicas/fisiología , Neuronas Dopaminérgicas/fisiología , Interneuronas/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Ganglios Basales/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
10.
J Neurosci ; 34(48): 16022-30, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429143

RESUMEN

In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Interneuronas/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Receptores de N-Metil-D-Aspartato/fisiología
11.
Cell Mol Life Sci ; 70(19): 3591-601, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23397131

RESUMEN

It is now widely accepted that neurogenesis continues throughout life. Accumulating evidence suggests that neurotransmitters are essential signaling molecules that control the different steps of neurogenesis. Nevertheless, we are only beginning to understand the precise role of neurotransmitter receptors and in particular excitatory glutamatergic transmission in the differentiation of adult-born neurons. Recent technical advances allow single-cell gene deletion to study cell-autonomous effects during the maturation of adult-born neurons. Single-cell gene deletion overcomes some of the difficulties in interpreting global gene deletion effects on entire brain areas or systemic pharmacological approaches that might result in compensatory circuit effects. The aim of this review is to summarize recent advances in the understanding of the role of NMDA receptors (NMDARs) during the differentiation of adult-born neurons and put them in perspective with previous findings on cortical development.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos
12.
Nat Commun ; 15(1): 6274, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054324

RESUMEN

Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.


Asunto(s)
Cognición , Odorantes , Oxitocina , Reconocimiento en Psicología , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Masculino , Ratones , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Cognición/efectos de los fármacos , Cognición/fisiología , Ratones Endogámicos C57BL , Corteza Olfatoria/fisiología , Conducta Social , Plasticidad Neuronal/efectos de los fármacos , Olfato/fisiología , Olfato/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Conducta Animal/efectos de los fármacos
13.
J Neurosci ; 32(36): 12603-11, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22956849

RESUMEN

In the developing telencephalon, NMDA receptors (NMDARs) are composed of GluN1 and GluN2B subunits. These "young" NMDARs set a brake on synapse recruitment in neurons of the neonatal cortex. The functional role of GluN2B for synapse maturation of adult-born granule cells (GCs) in the olfactory bulb has not been established and may differ from that of differentiating neurons in immature brain circuits with sparse activity. We genetically targeted GCs by sparse retroviral delivery in mouse subventricular zone that allows functional analysis of single genetically modified cells in an otherwise intact environment. GluN2B-deficient GCs did not exhibit impairment with respect to the first developmental milestones such as synaptogenesis, dendrite formation, and maturation of inhibitory synaptic inputs. However, GluN2B deletion prevented maturation of glutamatergic synaptic input. This severe impairment in synaptic development was associated with a decreased response to novel odors and eventually led to the demise of adult-born GCs. The effect of GluN2B on GC survival is subunit specific, since it cannot be rescued by GluN2A, the subunit dominating mature NMDAR function. Our observations indicate that, GluN2B-containing NMDARs promote synapse activation in adult-born GCs that integrate in circuits with high and correlated synaptic activity. The function of GluN2B-containing NMDARs on synapse maturation can thus be bidirectional depending on the environment.


Asunto(s)
Red Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Factores de Edad , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/citología , Red Nerviosa/embriología , Neuronas/citología , Odorantes , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Receptores de N-Metil-D-Aspartato/deficiencia
14.
Cell Tissue Res ; 354(1): 61-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23695972

RESUMEN

Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.


Asunto(s)
Modelos Animales de Enfermedad , Trastornos Mentales/genética , Trastornos Mentales/fisiopatología , Optogenética/métodos , Animales , Humanos
15.
Nat Commun ; 13(1): 3305, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676281

RESUMEN

Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.


Asunto(s)
Refuerzo en Psicología , Estriado Ventral , Animales , Corteza Cerebral , Imagen por Resonancia Magnética , Ratones , Tubérculo Olfatorio , Recompensa , Estriado Ventral/diagnóstico por imagen
16.
Proc Natl Acad Sci U S A ; 105(43): 16803-8, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18922783

RESUMEN

During the process of integration into brain circuits, new neurons develop both input and output synapses with their appropriate targets. The vast majority of neurons in the mammalian brain are generated before birth and integrate into immature circuits while these are being assembled. In contrast, adult-generated neurons face an additional challenge as they integrate into a mature, fully functional circuit. Here, we examined how synapses of a single neuronal type, the granule cell in the olfactory bulb, develop during their integration into the immature circuit of the newborn and the fully mature circuit of the adult rat. We used a genetic method to label pre and postsynaptic sites in granule neurons and observed a stereotypical development of synapses in specific dendritic domains. In adult-generated neurons, synapses appeared sequentially in different dendritic domains with glutamatergic input synapses that developed first at the proximal dendritic domain, followed several days later by the development of input-output synapses in the distal domain and additional input synapses in the basal domain. In contrast, for neurons generated in neonatal animals, input and input-output synapses appeared simultaneously in the proximal and distal domains, respectively, followed by the later appearance of input synapses to the basal domain. The sequential formation of synapses in adult-born neurons, with input synapses appearing before output synapses, may represent a cellular mechanism to minimize the disruption caused by the integration of new neurons into a mature circuit in the adult brain.


Asunto(s)
Dendritas , Sistema Nervioso/crecimiento & desarrollo , Sinapsis , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Sistema Nervioso/citología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Ratas
17.
Neuron ; 51(4): 455-66, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16908411

RESUMEN

Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Epilepsia/patología , Epilepsia/fisiopatología , Hipocampo/patología , Red Nerviosa/patología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Benzoxazinas , Bloqueadores de los Canales de Calcio/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Epilepsia/inducido químicamente , Epilepsia/genética , Expresión Génica/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ácido Kaínico/toxicidad , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , Naftalenos/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Células Piramidales/fisiología , Células Piramidales/efectos de la radiación , Receptor Cannabinoide CB1/deficiencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/genética
18.
J Neurosci ; 29(38): 11852-8, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19776271

RESUMEN

New neurons integrate in large numbers into the mature olfactory bulb circuit throughout life. The factors controlling the synaptic development of adult-born neurons and their connectivity remain essentially unknown. We examined the role of activity-dependent mechanisms in the synaptic development of adult-born neurons by genetic labeling of synapses while manipulating sensory input or cell-intrinsic excitability. Sensory deprivation induced marked changes in the density of input and output synapses during the period when new neurons develop most of their synapses. In contrast, when sensory deprivation started after synaptic formation was complete, input synapses increased in one domain without detectable changes in the other dendritic domains. We then investigated the effects of genetically raising the intrinsic excitability of new neurons on their synaptic development by delivering a voltage-gated sodium channel that triggers long depolarizations. Surprisingly, genetically increasing excitability did not affect synaptic development but rescued the changes in glutamatergic input synapses caused by sensory deprivation. These experiments show that, during adult neurogenesis in the olfactory bulb, synaptic plasticity is primarily restricted to an early period during the maturation of new neurons when they are still forming synapses. The addition of cells endowed with such an initial short-lived flexibility and long-term stability may enable the processing of information by the olfactory bulb to be both versatile and reliable in the face of changing behavioral demands.


Asunto(s)
Células Madre Adultas/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/fisiología , Bulbo Olfatorio/citología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Privación Sensorial/fisiología , Canales de Sodio/genética , Factores de Tiempo , Transfección
19.
PLoS Biol ; 5(11): e300, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18001150

RESUMEN

The mechanisms that regulate how dendrites target different neurons to establish connections with specific cell types remain largely unknown. In particular, the formation of cell-type-specific connectivity during postnatal neurogenesis could be either determined by the local environment of the mature neuronal circuit or by cell-autonomous properties of the immature neurons, already determined by their precursors. Using retroviral fate mapping, we studied the lamina-specific dendritic targeting of one neuronal type as defined by its morphology and intrinsic somatic electrical properties in neonatal and adult neurogenesis. Fate mapping revealed the existence of two separate populations of neuronal precursors that gave rise to the same neuronal type with two distinct patterns of dendritic targeting-innervating either a deep or superficial lamina, where they connect to different types of principal neurons. Furthermore, heterochronic and heterotopic transplantation demonstrated that these precursors were largely restricted to generate neurons with a predetermined pattern of dendritic targeting that was independent of the host environment. Our results demonstrate that, at least in the neonatal and adult mammalian brain, the pattern of dendritic targeting of a given neuron is a cell-autonomous property of their precursors.


Asunto(s)
Dendritas/fisiología , Interneuronas/citología , Vías Nerviosas/crecimiento & desarrollo , Bulbo Olfatorio/citología , Animales , Animales Recién Nacidos , Mapeo Encefálico , Linaje de la Célula , Movimiento Celular , Trasplante de Células , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/crecimiento & desarrollo , Femenino , Vectores Genéticos , Interneuronas/fisiología , Masculino , Bulbo Olfatorio/crecimiento & desarrollo , Ratas , Ratas Endogámicas , Retroviridae/genética
20.
Nat Commun ; 11(1): 3460, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651365

RESUMEN

The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Tubérculo Olfatorio/efectos de los fármacos , Animales , Dopamina/farmacología , Masculino , Mesencéfalo/citología , Ratones , Modelos Teóricos , Estriado Ventral/efectos de los fármacos , Estriado Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA