Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 47(13): 3303-3306, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776611

RESUMEN

The importance of cellular-scale mechanical properties is well-established, yet it is challenging to map subcellular elasticity in three dimensions. We present subcellular mechano-microscopy, an optical coherence microscopy (OCM)-based variant of three-dimensional (3-D) compression optical coherence elastography (OCE) that provides an elasticity system resolution of 5 × 5 × 5 µm: a 7-fold improvement in system resolution over previous OCE studies of cells. The improved resolution is achieved through a ∼5-fold improvement in optical resolution, refinement of the strain estimation algorithm, and demonstration that mechanical deformation of subcellular features provides feature resolution far greater than that demonstrated previously on larger features with diameter >250 µm. We use mechano-microscopy to image adipose-derived stem cells encapsulated in gelatin methacryloyl. We compare our results with compression OCE and demonstrate that mechano-microscopy can provide contrast from subcellular features not visible using OCE.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Metacrilatos , Elasticidad , Gelatina , Microscopía
2.
Opt Express ; 29(11): 16950-16968, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154247

RESUMEN

Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.

3.
Opt Lett ; 46(18): 4534-4537, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525040

RESUMEN

Optical palpation maps stress at the surface of biological tissue into 2D images. It relies on measuring surface deformation of a compliant layer, which to date has been performed with optical coherence tomography (OCT). OCT-based optical palpation holds promise for improved clinical diagnostics; however, the complexity and cost hinder broad adoption. In this Letter, we introduce coherence function-encoded optical palpation (CFE-OP) using a novel optical profilometry technique that exploits the envelope of the coherence function rather than its peak position, which is typically used to retrieve depth information. CFE-OP utilizes a Fabry-Perot laser diode (bandwidth, 2.2 nm) and a single photodiode in a Michelson interferometer to detect the position along the coherence envelope as a function of path length. This technique greatly reduces complexity and cost in comparison to the OCT-based approach. We perform CFE-OP on phantom and excised human breast tissue, demonstrating comparable mechanical contrast to OCT-based optical palpation and the capability to distinguish stiff tumor from soft benign tissue.


Asunto(s)
Palpación , Tomografía de Coherencia Óptica , Humanos , Fantasmas de Imagen
4.
Proc Natl Acad Sci U S A ; 114(22): 5647-5652, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507138

RESUMEN

The spatial presentation of mechanical information is a key parameter for cell behavior. We have developed a method of polymerization control in which the differential diffusion distance of unreacted cross-linker and monomer into a prepolymerized hydrogel sink results in a tunable stiffness gradient at the cell-matrix interface. This simple, low-cost, robust method was used to produce polyacrylamide hydrogels with stiffness gradients of 0.5, 1.7, 2.9, 4.5, 6.8, and 8.2 kPa/mm, spanning the in vivo physiological and pathological mechanical landscape. Importantly, three of these gradients were found to be nondurotactic for human adipose-derived stem cells (hASCs), allowing the presentation of a continuous range of stiffnesses in a single well without the confounding effect of differential cell migration. Using these nondurotactic gradient gels, stiffness-dependent hASC morphology, migration, and differentiation were studied. Finally, the mechanosensitive proteins YAP, Lamin A/C, Lamin B, MRTF-A, and MRTF-B were analyzed on these gradients, providing higher-resolution data on stiffness-dependent expression and localization.


Asunto(s)
Acrilamida/química , Resinas Acrílicas/química , Movimiento Celular/fisiología , Hidrogeles/química , Mecanotransducción Celular/fisiología , Células Madre/metabolismo , Adulto , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Línea Celular , Módulo de Elasticidad/fisiología , Humanos , Polimerizacion
5.
Biophys J ; 113(11): 2540-2551, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212007

RESUMEN

Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the origins of disease; however, cellular-scale resolution is not readily achievable in intact tissue volumes. Here, we demonstrate volumetric imaging of Young's modulus using ultrahigh-resolution optical coherence elastography, and apply it to characterizing the stiffness of mouse aortas. We achieve isotropic resolution of better than 15 µm over a 1-mm lateral field of view through the entire depth of an intact aortic wall. We employ a method of quasi-static compression elastography that measures volumetric axial strain and uses a compliant, transparent layer to measure surface axial stress. This combination is used to estimate Young's modulus throughout the volume. We demonstrate differentiation by stiffness of individual elastic lamellae and vascular smooth muscle. We observe stiffening of the aorta in regulator of G protein signaling 5-deficient mice, a model that is linked to vascular remodeling and fibrosis. We observe increased stiffness with proximity to the heart, as well as regions with micro-structural and micro-mechanical signatures characteristic of fibrous and lipid-rich tissue. High-resolution imaging of Young's modulus with optical coherence elastography may become an important tool in vascular biology and in other fields concerned with understanding the role of mechanics within the complex three-dimensional architecture of tissue.


Asunto(s)
Aorta/diagnóstico por imagen , Aorta/fisiología , Diagnóstico por Imagen de Elasticidad , Fenómenos Ópticos , Relación Señal-Ruido , Rigidez Vascular , Animales , Aorta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas RGS/deficiencia
6.
Opt Lett ; 42(7): 1233-1236, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28362737

RESUMEN

Depth-encoded optical coherence elastography (OCE) enables simultaneous acquisition of two three-dimensional (3D) elastograms from opposite sides of a sample. By the choice of suitable path-length differences in each of two interferometers, the detected carrier frequencies are separated, allowing depth-ranging from each interferometer to be performed simultaneously using a single spectrometer. We demonstrate depth-encoded OCE on a silicone phantom and a freshly excised sample of mouse liver. This technique minimizes the required spectral detection hardware and halves the total scan time. Depth-encoded OCE may expedite clinical translation in time-sensitive applications requiring rapid 3D imaging of multiple tissue surfaces, such as tumor margin assessment in breast-conserving surgery.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Diagnóstico por Imagen de Elasticidad , Hígado/citología , Hígado/diagnóstico por imagen , Ratones , Fantasmas de Imagen , Factores de Tiempo
7.
Opt Lett ; 41(1): 21-4, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26696148

RESUMEN

Visualizing stiffness within the local tissue environment at the cellular and subcellular level promises to provide insight into the genesis and progression of disease. In this Letter, we propose ultrahigh-resolution optical coherence elastography (UHROCE), and demonstrate 3D imaging of local axial strain of tissues undergoing compressive loading. We combine optical coherence microscopy (OCM) and phase-sensitive detection of local tissue displacement to produce strain elastograms with resolution (x,y,z) of 2×2×15 µm. We demonstrate this performance on a freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography (OCE) system.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Aorta/diagnóstico por imagen , Imagenología Tridimensional , Ratones , Fantasmas de Imagen , Relación Señal-Ruido
8.
BMC Cancer ; 16(1): 874, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829404

RESUMEN

BACKGROUND: Evaluation of lymph node involvement is an important factor in detecting metastasis and deciding whether to perform axillary lymph node dissection (ALND) in breast cancer surgery. As ALND is associated with potentially severe long term morbidity, the accuracy of lymph node assessment is imperative in avoiding unnecessary ALND. The mechanical properties of malignant lymph nodes are often distinct from those of normal nodes. A method to image the micro-scale mechanical properties of lymph nodes could, thus, provide diagnostic information to aid in the assessment of lymph node involvement in metastatic cancer. In this study, we scan axillary lymph nodes, freshly excised from breast cancer patients, with optical coherence micro-elastography (OCME), a method of imaging micro-scale mechanical strain, to assess its potential for the intraoperative assessment of lymph node involvement. METHODS: Twenty-six fresh, unstained lymph nodes were imaged from 15 patients undergoing mastectomy or breast-conserving surgery with axillary clearance. Lymph node specimens were bisected to allow imaging of the internal face of each node. Co-located OCME and optical coherence tomography (OCT) scans were taken of each sample, and the results compared to standard post-operative hematoxylin-and-eosin-stained histology. RESULTS: The optical backscattering signal provided by OCT alone may not provide reliable differentiation by inspection between benign and malignant lymphoid tissue. Alternatively, OCME highlights local changes in tissue strain that correspond to malignancy and are distinct from strain patterns in benign lymphoid tissue. The mechanical contrast provided by OCME complements the optical contrast provided by OCT and aids in the differentiation of malignant tumor from uninvolved lymphoid tissue. CONCLUSION: The combination of OCME and OCT images represents a promising method for the identification of malignant lymphoid tissue. This method shows potential to provide intraoperative assessment of lymph node involvement, thus, preventing unnecessary removal of uninvolved tissues and improving patient outcomes.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Ganglios Linfáticos/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Axila , Neoplasias de la Mama/cirugía , Femenino , Humanos , Cuidados Intraoperatorios , Ganglios Linfáticos/cirugía , Metástasis Linfática , Imagen Multimodal
9.
Opt Lett ; 39(10): 3014-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978261

RESUMEN

We present optical palpation, a tactile imaging technique for mapping micrometer- to millimeter-scale mechanical variations in soft tissue. In optical palpation, a stress sensor consisting of translucent, compliant silicone with known stress-strain behavior is placed on the tissue surface and a compressive load is applied. Optical coherence tomography (OCT) is used to measure the local strain in the sensor, from which the local stress at the sample surface is calculated and mapped onto an image. We present results in tissue-mimicking phantoms, demonstrating the detection of a feature embedded 4.7 mm below the sample surface, well beyond the depth range of OCT. We demonstrate the use of optical palpation to delineate the boundary of a region of tumor in freshly excised human breast tissue, validated against histopathology.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/fisiopatología , Diagnóstico por Imagen de Elasticidad/instrumentación , Manometría/instrumentación , Palpación/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Tacto , Fuerza Compresiva , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Dureza , Humanos , Estrés Mecánico , Resistencia a la Tracción , Transductores
10.
Opt Lett ; 39(10): 2888-91, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978229

RESUMEN

We present an optofluidic optical coherence tomography (OCT) needle probe capable of modifying the local optical properties of tissue to improve needle-probe imaging performance. The side-viewing probe comprises an all-fiber-optic design encased in a hypodermic needle (outer diameter 720 µm) and integrates a coaxial fluid-filled channel, terminated by an outlet adjacent to the imaging window, allowing focal injection of fluid to a target tissue. This is the first fully integrated OCT needle probe design to incorporate fluid injection into the imaging mechanism. The utility of this probe is demonstrated in air-filled sheep lungs, where injection of small quantities of saline is shown, by local refractive index matching, to greatly improve image penetration through multiple layers of alveoli. 3D OCT images are correlated against histology, showing improvement in the capability to image lung structures such as bronchioles and blood vessels.


Asunto(s)
Pulmón/citología , Sistemas Microelectromecánicos/instrumentación , Microfluídica/instrumentación , Agujas , Dispositivos Ópticos , Procesamiento de Señales Asistido por Computador/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Animales , Medios de Contraste/administración & dosificación , Diseño de Equipo , Análisis de Falla de Equipo , Técnicas In Vitro , Ovinos , Cloruro de Sodio/administración & dosificación , Integración de Sistemas
11.
Biomed Opt Express ; 15(6): 3609-3626, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867802

RESUMEN

In quantitative micro-elastography (QME), a pre-characterized compliant layer with a known stress-strain curve is utilized to map stress at the sample surface. However, differences in the boundary conditions of the compliant layer when it is mechanically characterized and when it is used in QME experiments lead to inconsistent stress estimation and consequently, inaccurate elasticity measurements. Here, we propose a novel in situ stress estimation method using an optical coherence tomography (OCT)-based uniaxial compression testing system integrated with the QME experimental setup. By combining OCT-measured axial strain with axial stress determined using a load cell in the QME experiments, we can estimate in situ stress for the compliant layer, more accurately considering its boundary conditions. Our proposed method shows improved accuracy, with an error below 10%, compared to 85% using the existing QME technique with no lubrication. Furthermore, demonstrations on hydrogels and cells indicate the potential of this approach for improving the characterization of the micro-scale mechanical properties of cells and their interactions with the surrounding biomaterial, which has potential for application in cell mechanobiology.

12.
Adv Healthc Mater ; 13(18): e2304254, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593989

RESUMEN

In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.


Asunto(s)
Hidrogeles , Miocitos del Músculo Liso , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Animales , Mecanotransducción Celular/fisiología , Porcinos , Matriz Extracelular/metabolismo , Células Cultivadas
13.
Exp Mol Med ; 56(3): 583-599, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424192

RESUMEN

Tendinopathy is one of the most common musculoskeletal diseases, and mechanical overload is considered its primary cause. However, the underlying mechanism through which mechanical overload induces tendinopathy has not been determined. In this study, we identified for the first time that tendon cells can release extracellular mitochondria (ExtraMito) particles, a subtype of medium extracellular particles (mEPs), into the environment through a process regulated by mechanical loading. RNA sequencing systematically revealed that oxygen-related reactions, extracellular particles, and inflammation were present in diseased human tendons, suggesting that these factors play a role in the pathogenesis of tendinopathy. We simulated the disease condition by imposing a 9% strain overload on three-dimensional mouse tendon constructs in our cyclic uniaxial stretching bioreactor. The three-dimensional mouse tendon constructs under normal loading with 6% strain exhibited an extended mitochondrial network, as observed through live-cell confocal laser scanning microscopy. In contrast, mechanical overload led to a fragmented mitochondrial network. Our microscopic and immunoblot results demonstrated that mechanical loading induced tendon cells to release ExtraMito particles. Furthermore, we showed that mEPs released from tendon cells overloaded with a 9% strain (mEP9%) induced macrophage chemotaxis and increased the production of proinflammatory cytokines, including IL-6, CXCL1, and IL-18, from macrophages compared to mEP0%, mEP3%, and mEP6%. Partial depletion of the ExtraMito particles from mEP9% by magnetic-activated cell sorting significantly reduced macrophage chemotaxis. N-acetyl-L-cysteine treatment preserved the mitochondrial network in overloaded tendon cells, diminishing overload-induced macrophage chemotaxis toward mEP9%. These findings revealed a novel mechanism of tendinopathy; in an overloaded environment, ExtraMito particles convey mechanical response signals from tendon cells to the immune microenvironment, culminating in tendinopathy.


Asunto(s)
Tendinopatía , Tendones , Ratones , Animales , Humanos , Tendones/patología , Tendinopatía/etiología , Tendinopatía/patología , Inflamación/patología , ARN , Citocinas
14.
Biomed Opt Express ; 14(10): 5127-5147, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37854567

RESUMEN

Quantitative micro-elastography (QME) is a compression-based optical coherence elastography technique capable of measuring the mechanical properties of tissue on the micro-scale. As QME requires contact between the imaging window and the sample, the presence of friction affects the accuracy of the estimated elasticity. In previous implementations, a lubricant was applied at the contact surfaces, which was assumed to result in negligible friction. However, recently, errors in the estimation of elasticity caused by friction have been reported. This effect has yet to be characterized and is, therefore, not well understood. In this work, we present a systematic analysis of friction in QME using silicone phantoms. We demonstrate that friction, and, therefore, the elasticity accuracy, is influenced by several experimental factors, including the viscosity of the lubricant, the mechanical contrast between the compliant layer and the sample, and the time after the application of a compressive strain. Elasticity errors over an order of magnitude were observed in the absence of appropriate lubrication when compared to uniaxial compression testing. Using an optimized lubrication protocol, we demonstrate accurate elasticity estimation (<10% error) for nonlinear elastic samples with Young's moduli ranging from 3 kPa to 130 kPa. Finally, using a structured phantom, we demonstrate that friction can significantly reduce mechanical contrast in QME. We believe that the framework established in this study will facilitate more robust elasticity estimations in QME, as well as being readily adapted to understand the effects of friction in other contact elastography techniques.

15.
Plant Methods ; 19(1): 105, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821949

RESUMEN

BACKGROUND: Modern field pea breeding faces a significant challenge in selecting lines with strong stems that resist lodging. Traditional methods of assessing stem strength involve destructive mechanical tests on mature stems after natural senescence, such as measuring stem flexion, stem buckling or the thickness of dry stems when compressed, but these measurements may not correspond to the strength of stems in the living plant. Optical coherence tomography (OCT) can be used as a noncontact and nondestructive method to measure stem wall thickness in living plants by acquiring two- or three-dimensional images of living plant tissue. RESULTS: In this proof-of-principle study, we demonstrated in vivo characterisation of stem wall thickness using OCT, with the measurement corrected for the refractive index of the stem tissue. This in vivo characterisation was achieved through real-time imaging of stems, with an acquisition rate of 13 milliseconds per two-dimensional, cross-sectional OCT image. We also acquired OCT images of excised stems and compared the accuracy of in vivo OCT measurements of stem wall thickness with ex vivo results for 10 plants each of two field pea cultivars, Dunwa and Kaspa. In vivo OCT measurements of stem wall thickness have an average percent error of - 3.1% when compared with ex vivo measurements. Additionally, we performed in vivo measurements of both stem wall thickness and stem width at various internode positions on the two cultivars. The results revealed that Dunwa had a uniform stem wall thickness across different internode positions, while Kaspa had a significantly negative slope of [Formula: see text]0.0198 mm/node. Both cultivars exhibited an increase in stem width along the internode positions; however, Dunwa had a rate of increase of 0.1844 mm/node, which is three times higher than that of Kaspa. CONCLUSIONS: Our study has demonstrated the efficacy of OCT for accurate measurement of the stem wall thickness of live field pea. Moreover, OCT shows that the trends of stem wall thickness and stem width along the internode positions are different for the two cultivars, Dunwa and Kaspa, potentially hinting at differences in their stem strength. This rapid, in vivo imaging method provides a useful tool for characterising physical traits critical in breeding cultivars that are resistant to lodging.

16.
Adv Healthc Mater ; 12(31): e2301506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670531

RESUMEN

The tumor microenvironment presents spatiotemporal shifts in biomechanical properties with cancer progression. Hydrogel biomaterials like GelAGE offer the stiffness tuneability to recapitulate dynamic changes in tumor tissues by altering photo-energy exposures. Here, a tuneable hydrogel with spatiotemporal control of stiffness and mesh-network is developed. The volume of MCF7 spheroids encapsulated in a linear stiffness gradient demonstrates an inverse relationship with stiffness (p < 0.0001). As spheroids are exposed to increased crosslinking (stiffer) and greater mechanical confinement, spheroid stiffness increases. Protein expression (TRPV4, ß1 integrin, E-cadherin, and F-actin) decreases with increasing stiffness while showing strong correlations to spheroid volume (r2  > 0.9). To further investigate the role of volume, MCF7 spheroids are grown in a soft matrix for 5 days prior to a second polymerisation which presents a stiffness gradient to equally expanded spheroids. Despite being exposed to variable stiffness, these spheroids show even protein expression, confirming volume as a key regulator. Overall, this work showcases the versatility of GelAGE and demonstrates volume expansion as a key regulator of 3D mechanosensation in MCF7 breast cancer spheroids. This platform has the potential to further investigation into the role of stiffness and dimensionality in 3D spheroid culture for other types of cancers and diseases.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Esferoides Celulares/metabolismo , Hidrogeles , Actinas , Microambiente Tumoral
17.
Cell Rep Med ; 4(7): 101113, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467718

RESUMEN

Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.


Asunto(s)
Hidrogeles , Recurrencia Local de Neoplasia , Ratones , Animales , Perros , Hidrogeles/uso terapéutico , Recurrencia Local de Neoplasia/prevención & control , Inmunoterapia , Modelos Animales de Enfermedad , Microambiente Tumoral
18.
Opt Lett ; 37(12): 2310-2, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22739891

RESUMEN

We incorporate, for the first time, optical coherence elastography (OCE) into a needle probe and demonstrate its ability to measure the microscopic deformation of soft tissues located well beyond the depth limit of reports to date. Needle OCE utilizes the force imparted by the needle tip as the loading mechanism and measures tissue deformation ahead of the needle during insertion. Measurements were performed in tissue-mimicking phantoms and ex vivo porcine trachea. Results demonstrate differentiation of tissues based on mechanical properties and highlight the potential of needle OCE for in vivo tissue boundary detection.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/instrumentación , Agujas , Tráquea/diagnóstico por imagen , Animales , Fenómenos Biomecánicos , Fantasmas de Imagen , Porcinos , Tomografía de Coherencia Óptica
19.
Biomed Opt Express ; 13(4): 2224-2246, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519281

RESUMEN

In compression optical coherence elastography (OCE), deformation is quantified as the local strain at each pixel in the OCT field-of-view. A range of strain estimation methods have been demonstrated, yet it is unclear which method provides the best performance. Here, we analyze the two most prevalent strain estimation methods used in phase-sensitive compression OCE, i.e., weighted least squares (WLS) and the vector method. We introduce a framework to compare strain imaging metrics, incorporating strain sensitivity, strain signal-to-noise ratio (SNR), strain resolution, and strain accuracy. In addition, we propose a new phase unwrapping algorithm in OCE, fast phase unwrapping (FPU), and combine it with WLS, termed WLSFPU. Using the framework, we compare this new strain estimation method with both a current implementation of WLS that incorporates weighted phase unwrapping (WPU), termed WLSWPU, and the vector method. Our analysis reveals that the three methods provide similar strain sensitivity, strain SNR, and strain resolution, but that WLSFPU extends the dynamic range of accurate, measurable local strain, e.g., measuring a strain of 2.5 mɛ with ∼4% error, that is ×11 and ×15 smaller than the error measured using WLSWPU and the vector method, respectively. We also demonstrate, for the first time, the capability to detect sub-resolution contrast in compression OCE, i.e., changes in strain occurring within the strain axial resolution, and how this contrast varies between the different strain estimation methods. Lastly, we compare the performance of the three strain estimation methods on mouse skeletal muscle and human breast tissue and demonstrate that WLSFPU avoids strain imaging artifacts resulting from phase unwrapping errors in WLSWPU and provides improved contrast over the other two methods.

20.
Ophthalmol Sci ; 2(2): 100134, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36249684

RESUMEN

Purpose: To examine the distribution of foveal avascular zone (FAZ) parameters, with and without correction for lateral magnification, in a large cohort of healthy young adults. Design: Cross-sectional, observational cohort study. Participants: A total of 504 healthy adults, 27 to 30 years of age. Methods: Participants underwent a comprehensive ophthalmic examination including axial length measurement and OCT angiography (OCTA) imaging of the macula. OCT angiography images of combined superficial and deep retinal vessel plexuses were processed via a custom software to extract foveal avascular zone area (FAZA) and foveal density-300 (FD-300), the vessel density in a 300-µm wide annulus surrounding the FAZ, with and without correction for lateral magnification. Bland-Altman analyses were performed to examine the effect of lateral magnification on FAZA and FD-300, as well as to evaluate the interocular agreement in both parameters. Linear mixed-effects models were used to examine the relationship between retinal thicknesses and OCTA parameters. Main Outcome Measures: The FAZA and FD-300, corrected for lateral magnification. Results: The mean (standard deviation [SD]) of laterally corrected FAZA and FD-300 was 0.22 mm2 (0.10 mm2) and 51.9% (3.2%), respectively. Relative to uncorrected data, 55.6% of corrected FAZA showed a relative change > 5%, whereas all FD-300 changes were within 5%. There was good interocular symmetry (mean right eye-left eye difference, 95% limits of agreement [LoA]) in both FAZA (0.006 mm2, -0.05 mm2, to 0.07 mm2) and FD-300 (-0.05%, -5.39%, to 5.30%). There were significant negative associations between central retinal thickness and FAZA (ß = -0.0029), as well as between central retinal thickness and FD-300 (ß = -0.044), with the relationships driven by inner, not outer, retina. Conclusions: We reported lateral magnification adjusted normative values for FAZA and FD-300 in a large cohort of young, healthy eyes. Clinicians should strongly consider accounting for lateral magnification when evaluating FAZA. Good interocular agreement in FAZA and FD-300 suggests the contralateral eye can be used as control data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA