Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779889

RESUMEN

BACKGROUND: The use of fidaxomicin is recommended as first line therapy for all patients with Clostridioides difficile infection (CDI). However, real-world studies have shown conflicting evidence of superiority. METHODS: We conducted a retrospective single center study of patients diagnosed with CDI between 2011-2021. A primary composite outcome of clinical failure, 30-day relapse or CDI-related death was used. A multivariable cause specific Cox proportional hazards model was used to evaluate fidaxomicin compared to vancomycin in preventing the composite outcome. A separate model was fit on a subset of patients with C. difficile ribotypes adjusting for ribotype. RESULTS: There were 598 patients included, of whom 84 received fidaxomicin. The primary outcome occurred in 8 (9.5%) in the fidaxomicin group compared to 111 (21.6%) in the vancomycin group. The adjusted multivariable model showed fidaxomicin was associated with 63% reduction in the risk of the composite outcome compared to vancomycin (HR = 0.37, 95% CI 0.17-0.80). In the 337 patients with ribotype data after adjusting for ribotype 027, the results showing superiority of fidaxomicin were maintained (HR = 0.19, 95% CI 0.05-0.77). CONCLUSION: In the treatment of CDI, we showed that real-world use of fidaxomicin is associated with lower risk of a composite endpoint of treatment failure.

2.
PLoS Med ; 20(1): e1004154, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649256

RESUMEN

BACKGROUND: Health-related quality of life metrics evaluate treatments in ways that matter to patients, so are often included in randomised clinical trials (hereafter trials). Multimorbidity, where individuals have 2 or more conditions, is negatively associated with quality of life. However, whether multimorbidity predicts change over time or modifies treatment effects for quality of life is unknown. Therefore, clinicians and guideline developers are uncertain about the applicability of trial findings to people with multimorbidity. We examined whether comorbidity count (higher counts indicating greater multimorbidity) (i) is associated with quality of life at baseline; (ii) predicts change in quality of life over time; and/or (iii) modifies treatment effects on quality of life. METHODS AND FINDINGS: Included trials were registered on the United States trials registry for selected index medical conditions and drug classes, phase 2/3, 3 or 4, had ≥300 participants, a nonrestrictive upper age limit, and were available on 1 of 2 trial repositories on 21 November 2016 and 18 May 2018, respectively. Of 124 meeting these criteria, 56 trials (33,421 participants, 16 index conditions, and 23 drug classes) collected a generic quality of life outcome measure (35 EuroQol-5 dimension (EQ-5D), 31 36-item short form survey (SF-36) with 10 collecting both). Blinding and completeness of follow up were examined for each trial. Using trials where individual participant data (IPD) was available from 2 repositories, a comorbidity count was calculated from medical history and/or prescriptions data. Linear regressions were fitted for the association between comorbidity count and (i) quality of life at baseline; (ii) change in quality of life during trial follow up; and (iii) treatment effects on quality of life. These results were then combined in Bayesian linear models. Posterior samples were summarised via the mean, 2.5th and 97.5th percentiles as credible intervals (95% CI) and via the proportion with values less than 0 as the probability (PBayes) of a negative association. All results are in standardised units (obtained by dividing the EQ-5D/SF-36 estimates by published population standard deviations). Per additional comorbidity, adjusting for age and sex, across all index conditions and treatment comparisons, comorbidity count was associated with lower quality of life at baseline and with a decline in quality of life over time (EQ-5D -0.02 [95% CI -0.03 to -0.01], PBayes > 0.999). Associations were similar, but with wider 95% CIs crossing the null for SF-36-PCS and SF-36-MCS (-0.05 [-0.10 to 0.01], PBayes = 0.956 and -0.05 [-0.10 to 0.01], PBayes = 0.966, respectively). Importantly, there was no evidence of any interaction between comorbidity count and treatment efficacy for either EQ-5D or SF-36 (EQ-5D -0.0035 [95% CI -0.0153 to -0.0065], PBayes = 0.746; SF-36-MCS (-0.0111 [95% CI -0.0647 to 0.0416], PBayes = 0.70 and SF-36-PCS -0.0092 [95% CI -0.0758 to 0.0476], PBayes = 0.631. CONCLUSIONS: Treatment effects on quality of life did not differ by multimorbidity (measured via a comorbidity count) at baseline-for the medical conditions studied, types and severity of comorbidities and level of quality of life at baseline, suggesting that evidence from clinical trials is likely to be applicable to settings with (at least modestly) higher levels of comorbidity. TRIAL REGISTRATION: A prespecified protocol was registered on PROSPERO (CRD42018048202).


Asunto(s)
Calidad de Vida , Humanos , Teorema de Bayes , Enfermedad Crónica , Encuestas y Cuestionarios , Comorbilidad
3.
PLoS Med ; 20(6): e1004176, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279199

RESUMEN

BACKGROUND: People with comorbidities are underrepresented in clinical trials. Empirical estimates of treatment effect modification by comorbidity are lacking, leading to uncertainty in treatment recommendations. We aimed to produce estimates of treatment effect modification by comorbidity using individual participant data (IPD). METHODS AND FINDINGS: We obtained IPD for 120 industry-sponsored phase 3/4 trials across 22 index conditions (n = 128,331). Trials had to be registered between 1990 and 2017 and have recruited ≥300 people. Included trials were multicentre and international. For each index condition, we analysed the outcome most frequently reported in the included trials. We performed a two-stage IPD meta-analysis to estimate modification of treatment effect by comorbidity. First, for each trial, we modelled the interaction between comorbidity and treatment arm adjusted for age and sex. Second, for each treatment within each index condition, we meta-analysed the comorbidity-treatment interaction terms from each trial. We estimated the effect of comorbidity measured in 3 ways: (i) the number of comorbidities (in addition to the index condition); (ii) presence or absence of the 6 commonest comorbid diseases for each index condition; and (iii) using continuous markers of underlying conditions (e.g., estimated glomerular filtration rate (eGFR)). Treatment effects were modelled on the usual scale for the type of outcome (absolute scale for numerical outcomes, relative scale for binary outcomes). Mean age in the trials ranged from 37.1 (allergic rhinitis trials) to 73.0 (dementia trials) and percentage of male participants range from 4.4% (osteoporosis trials) to 100% (benign prostatic hypertrophy trials). The percentage of participants with 3 or more comorbidities ranged from 2.3% (allergic rhinitis trials) to 57% (systemic lupus erythematosus trials). We found no evidence of modification of treatment efficacy by comorbidity, for any of the 3 measures of comorbidity. This was the case for 20 conditions for which the outcome variable was continuous (e.g., change in glycosylated haemoglobin in diabetes) and for 3 conditions in which the outcomes were discrete events (e.g., number of headaches in migraine). Although all were null, estimates of treatment effect modification were more precise in some cases (e.g., sodium-glucose co-transporter-2 (SGLT2) inhibitors for type 2 diabetes-interaction term for comorbidity count 0.004, 95% CI -0.01 to 0.02) while for others credible intervals were wide (e.g., corticosteroids for asthma-interaction term -0.22, 95% CI -1.07 to 0.54). The main limitation is that these trials were not designed or powered to assess variation in treatment effect by comorbidity, and relatively few trial participants had >3 comorbidities. CONCLUSIONS: Assessments of treatment effect modification rarely consider comorbidity. Our findings demonstrate that for trials included in this analysis, there was no empirical evidence of treatment effect modification by comorbidity. The standard assumption used in evidence syntheses is that efficacy is constant across subgroups, although this is often criticised. Our findings suggest that for modest levels of comorbidities, this assumption is reasonable. Thus, trial efficacy findings can be combined with data on natural history and competing risks to assess the likely overall benefit of treatments in the context of comorbidity.


Asunto(s)
Asma , Diabetes Mellitus Tipo 2 , Rinitis Alérgica , Humanos , Masculino , Comorbilidad , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Ann Neurol ; 92(4): 620-630, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866711

RESUMEN

OBJECTIVE: This study aimed to examine the relationship between covert cerebrovascular disease, comprised of covert brain infarction and white matter disease, discovered incidentally in routine care, and subsequent Parkinson disease. METHODS: Patients were ≥50 years and received neuroimaging for non-stroke indications in the Kaiser Permanente Southern California system from 2009 to 2019. Natural language processing identified incidentally discovered covert brain infarction and white matter disease and classified white matter disease severity. The Parkinson disease outcome was defined as 2 ICD diagnosis codes. RESULTS: 230,062 patients were included (median follow-up 3.72 years). A total of 1,941 Parkinson disease cases were identified (median time-to-event 2.35 years). Natural language processing identified covert cerebrovascular disease in 70,592 (30.7%) patients, 10,622 (4.6%) with covert brain infarction and 65,814 (28.6%) with white matter disease. After adjustment for known risk factors, white matter disease was associated with Parkinson disease (hazard ratio 1.67 [95%CI, 1.44, 1.93] for patients <70 years and 1.33 [1.18, 1.50] for those ≥70 years). Greater severity of white matter disease was associated with increased incidence of Parkinson disease(/1,000 person-years), from 1.52 (1.43, 1.61) in patients without white matter disease to 4.90 (3.86, 6.13) in those with severe disease. Findings were robust when more specific definitions of Parkinson disease were used. Covert brain infarction was not associated with Parkinson disease (adjusted hazard ratio = 1.05 [0.88, 1.24]). INTERPRETATION: Incidentally discovered white matter disease was associated with subsequent Parkinson disease, an association strengthened with younger age and increased white matter disease severity. Incidentally discovered covert brain infarction did not appear to be associated with subsequent Parkinson disease. ANN NEUROL 2022;92:620-630.


Asunto(s)
Leucoencefalopatías , Enfermedad de Parkinson , Sustancia Blanca , Encéfalo , Infarto Encefálico/complicaciones , Estudios de Cohortes , Humanos , Leucoencefalopatías/complicaciones , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/epidemiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/epidemiología , Sustancia Blanca/diagnóstico por imagen
5.
Mult Scler ; 29(9): 1158-1161, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37555493

RESUMEN

Multiple sclerosis (MS) is heterogeneous with respect to outcomes, and evaluating possible heterogeneity of treatment effect (HTE) is of high interest. HTE is non-random variation in the magnitude of a treatment effect on a clinical outcome across levels of a covariate (i.e. a patient attribute or set of attributes). Multiple statistical techniques can evaluate HTE. The simplest but most bias-prone is conventional one variable-at-a-time subgroup analysis. Recently, multivariable predictive approaches have been promoted to provide more patient-centered results, by accounting for multiple relevant attributes simultaneously. We review approaches used to estimate HTE in clinical trials of MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Ensayos Clínicos como Asunto
6.
Cerebrovasc Dis ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935160

RESUMEN

BACKGROUND: Covert cerebrovascular disease (CCD) includes white matter disease (WMD) and covert brain infarction (CBI). Incidentally-discovered CCD is associated with increased risk of subsequent symptomatic stroke. However, it is unknown whether the severity of WMD or the location of CBI predicts risk. OBJECTIVES: To examine the association of incidentally-discovered WMD severity and CBI location with risk of subsequent symptomatic stroke. METHOD: This retrospective cohort study includes patients 50 years old in the Kaiser Permanente Southern California health system who received neuroimaging for a non-stroke indication between 2009-2019. Incidental CBI and WMD were identified via natural language processing of the neuroimage report, and WMD severity was classified into grades. RESULTS: 261,960 patients received neuroimaging; 78,555 (30.0%) were identified to have incidental WMD, and 12,857 (4.9%) to have incidental CBI. Increasing WMD severity is associated with increased incidence rate of future stroke. However, the stroke incidence rate in CT-identified WMD is higher at each level of severity compared to rates in MRI-identified WMD. Patients with mild WMD via CT have a stroke incidence rate of 24.9 per 1,000 person-years, similar to that of patients with severe WMD via MRI. Among incidentally-discovered CBI patients with a determined CBI location, 97.9% are subcortical rather than cortical infarcts. CBI confers a similar risk of future stroke, whether cortical or subcortical, or whether MRI- or CT-detected. CONCLUSIONS: Increasing severity of incidental WMD is associated with an increased risk of future symptomatic stroke, dependent on the imaging modality. Subcortical and cortical CBI conferred similar risks.

7.
Cerebrovasc Dis ; 52(1): 117-122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35760063

RESUMEN

BACKGROUND: Covert cerebrovascular disease (CCD) includes white matter disease (WMD) and covert brain infarction (CBI). Incidentally discovered CCD is associated with increased risk of subsequent symptomatic stroke. However, it is unknown whether the severity of WMD or the location of CBI predicts risk. OBJECTIVES: The aim of this study was to examine the association of incidentally discovered WMD severity and CBI location with risk of subsequent symptomatic stroke. METHOD: This retrospective cohort study includes patients aged ≥50 years old in the Kaiser Permanente Southern California health system who received neuroimaging for a nonstroke indication between 2009 and 2019. Incidental CBI and WMD were identified via natural language processing of the neuroimage report, and WMD severity was classified into grades. RESULTS: A total of 261,960 patients received neuroimaging; 78,555 patients (30.0%) were identified to have incidental WMD and 12,857 patients (4.9%) to have incidental CBI. Increasing WMD severity is associated with an increased incidence rate of future stroke. However, the stroke incidence rate in CT-identified WMD is higher at each level of severity compared to rates in MRI-identified WMD. Patients with mild WMD via CT have a stroke incidence rate of 24.9 per 1,000 person-years, similar to that of patients with severe WMD via MRI. Among incidentally discovered CBI patients with a determined CBI location, 97.9% are subcortical rather than cortical infarcts. CBI confers a similar risk of future stroke, whether cortical or subcortical or whether MRI- or CT-detected. CONCLUSIONS: Increasing severity of incidental WMD is associated with an increased risk of future symptomatic stroke, dependent on the imaging modality. Subcortical and cortical CBI conferred similar risks.


Asunto(s)
Trastornos Cerebrovasculares , Leucoencefalopatías , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Infarto Encefálico , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Trastornos Cerebrovasculares/complicaciones , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/epidemiología , Leucoencefalopatías/complicaciones , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
8.
BMC Med Res Methodol ; 23(1): 74, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977990

RESUMEN

BACKGROUND: Baseline outcome risk can be an important determinant of absolute treatment benefit and has been used in guidelines for "personalizing" medical decisions. We compared easily applicable risk-based methods for optimal prediction of individualized treatment effects. METHODS: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk, the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the prognostic index). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the prognostic index; models including a linear interaction of treatment with the prognostic index; models including an interaction of treatment with a restricted cubic spline transformation of the prognostic index; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. RESULTS: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N = 4,250; ~ 785 events). The restricted cubic splines model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N = 17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. CONCLUSIONS: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Pronóstico , Simulación por Computador , Tamaño de la Muestra
9.
Clin Trials ; 20(4): 328-337, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148125

RESUMEN

Despite the predominance of the evidence-based medicine paradigm, a fundamental incongruity remains: Evidence is derived from groups of people, yet medical decisions are made by and for individuals. Randomization ensures the comparability of treatment groups within a clinical trial, which allows for unbiased estimation of average treatment effects. If we treated groups of patients instead of individuals, or if patients with the same disease were identical to one another in all factors that determined the harms and the benefits of therapy, then these group-level averages would make a perfectly sound foundation for medical decision-making. But patients differ from one another in many ways that determine the likelihood of an outcome, both with and without a treatment. Nevertheless, popular approaches to evidence-based medicine have encouraged a reliance on the average treatment effects estimated from clinical trials and meta-analysis as guides to decision-making for individuals. Here, we discuss the limitations of this approach as well as limitations of conventional, one-variable-at-a-time subgroup analysis; finally, we discuss the rationale for "predictive" approaches to heterogeneous treatment effects. Predictive approaches to heterogeneous treatment effects combine methods for causal inference (e.g. randomization) with methods for prediction that permit inferences about which patients are likely to benefit and which are not, taking into account multiple relevant variables simultaneously to yield "personalized" estimates of benefit-harm trade-offs. We focus on risk modeling approaches, which rely on the mathematical dependence of the absolute treatment effect with the baseline risk, which varies substantially "across patients" in most trials. While there are a number of examples of risk modeling approaches that have been practice-changing, risk modeling does not provide ideal estimates of individual treatment effects, since risk modeling does not account for how individual variables might modify the effects of therapy. In "effect modeling," prediction models are developed directly on clinical trial data, including terms for treatment and treatment effect interactions. These more flexible approaches may better uncover individualized treatment effects, but are also prone to overfitting when dimensionality is high, power is low, and there is limited prior knowledge about effect modifiers.


Asunto(s)
Medicina Basada en la Evidencia , Atención Dirigida al Paciente , Humanos , Causalidad , Ensayos Clínicos como Asunto
10.
BMC Med ; 20(1): 456, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424619

RESUMEN

BACKGROUND: Supporting decisions for patients who present to the emergency department (ED) with COVID-19 requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized patients with COVID-19, in different locations and across time. METHODS: We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was developed on Dutch data. These models were validated on subsequent second-wave data at the same site (temporal validation) and at the other site (geographic validation). We assessed model performance by the Area Under the receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit. RESULTS: Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfactory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS systematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data. CONCLUSIONS: NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pandemic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space during a dynamic pandemic.


Asunto(s)
COVID-19 , Humanos , Pronóstico , COVID-19/diagnóstico , Mortalidad Hospitalaria , Curva ROC , Ciudad de Nueva York
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA