Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 71(12): 2526-2538, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35058274

RESUMEN

OBJECTIVE: Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN: We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS: MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION: Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Activación de Linfocitos
2.
Infect Immun ; 90(8): e0017422, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35862712

RESUMEN

The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans, with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models, indicating that an appropriate adaptive immune response is required for the control of the disease. However, cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients, the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points, downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Células T Asesinas Naturales , Linfocitos T Reguladores , Animales , Humanos , Hígado/fisiología , Ratones
3.
EMBO Rep ; 17(5): 769-79, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26993089

RESUMEN

Pioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R-spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5-positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non-regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R-spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder-derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride-treated mice. Human gallbladders were also a source of organoid-forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.


Asunto(s)
Proteínas Portadoras/metabolismo , Vesícula Biliar/citología , Células Madre/metabolismo , Trombospondinas/metabolismo , Animales , Biomarcadores , Proteínas Portadoras/genética , Proteínas Portadoras/farmacología , Diferenciación Celular/genética , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Hígado/citología , Ratones , Ratones Transgénicos , Organoides , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Células Madre/efectos de los fármacos , Trombospondinas/genética , Trombospondinas/farmacología , Transcriptoma
4.
Hepatology ; 63(6): 2004-17, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26853442

RESUMEN

UNLABELLED: Paracrine signalling mediated by cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear whether IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy (PH). Here, we found that plasma levels of IL-22 and its upstream cytokine, IL-23, are highly elevated in patients after major liver resection. In a mouse model of PH, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1(-/-) and Rag2(-/-) γc(-/) (-) mice, we show that the main producers of IL-22 post-PH are conventional natural killer cells and innate lymphoid cells type 1. Extracellular adenosine triphosphate (ATP), a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2-type nucleotide receptors, P2X1 and P2Y6, significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury, and impaired liver regeneration. CONCLUSION: This study shows that innate immune cell-derived IL-22 is required for efficient liver regeneration and that secretion of IL-22 in the regenerating liver is modulated by the ATP receptor, P2X1. (Hepatology 2016;63:2004-2017).


Asunto(s)
Interleucinas/metabolismo , Células Asesinas Naturales/metabolismo , Regeneración Hepática , Receptores Purinérgicos P2X1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Estrés del Retículo Endoplásmico , Hepatectomía , Humanos , Masculino , Ratones Endogámicos C57BL , Interleucina-22
5.
Hepatology ; 57(5): 1969-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22898900

RESUMEN

UNLABELLED: Nucleotides, such as adenosine triphosphate (ATP), are released by cellular injury, bind to purinergic receptors expressed on hepatic parenchymal and nonparenchymal cells, and modulate cellular crosstalk. Liver resection and resulting cellular stress initiate such purinergic signaling responses between hepatocytes and innate immune cells, which regulate and ultimately drive liver regeneration. We studied a murine model of partial hepatectomy using immunodeficient mice to determine the effects of natural killer (NK) cell-mediated purinergic signaling on liver regeneration. We noted first that liver NK cells undergo phenotypic changes post-partial hepatectomy (PH) in vivo, including increased cytotoxicity and more immature phenotype manifested by alterations in the expression of CD107a, CD27, CD11b, and CD16. Hepatocellular proliferation is significantly decreased in Rag2/common gamma-null mice (lacking T, B, and NK cells) when compared to wildtype and Rag1-null mice (lacking T and B cells but retaining NK cells). Extracellular ATP levels are elevated post-PH and NK cell cytotoxicity is substantively increased in vivo in response to hydrolysis of extracellular ATP levels by apyrase (soluble NTPDase). Moreover, liver regeneration is significantly increased by the scavenging of extracellular ATP in wildtype mice and in Rag2/common gamma-null mice after adoptive transfer of NK cells. Blockade of NKG2D-dependent interactions significantly decreased hepatocellular proliferation. In vitro, NK cell cytotoxicity is inhibited by extracellular ATP in a manner dependent on P2Y1, P2Y2, and P2X3 receptor activation. CONCLUSION: We propose that hepatic NK cells are activated and cytotoxic post-PH and support hepatocellular proliferation. NK cell cytotoxicity is, however, attenuated by hepatic release of extracellular ATP by way of the activation of specific P2 receptors. Clearance of extracellular ATP elevates NK cell cytotoxicity and boosts liver regeneration.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Asesinas Naturales/fisiología , Regeneración Hepática/fisiología , Hígado/metabolismo , Modelos Animales , Animales , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Hepatectomía , Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hidrólisis , Técnicas In Vitro , Células Asesinas Naturales/citología , Hígado/citología , Hígado/cirugía , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2/metabolismo
6.
Cell Death Differ ; 31(1): 119-131, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001256

RESUMEN

Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Acetaminofén/toxicidad , Hígado/metabolismo , Hepatocitos/metabolismo , Metabolismo Energético , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Necrosis/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Mitocondrias Hepáticas/metabolismo
7.
Sci Adv ; 10(22): eadl0320, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820160

RESUMEN

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.


Asunto(s)
Biosíntesis de Proteínas , Ribonucleasa Pancreática , Ribosomas , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/genética , Humanos , Animales , Ratones , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Línea Celular , Especificidad de Órganos , Proteínas Portadoras
8.
Cell Death Dis ; 12(4): 366, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824326

RESUMEN

The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.


Asunto(s)
Hepatocitos/efectos de los fármacos , Interleucinas/metabolismo , Hígado/lesiones , Péptidos/farmacología , Receptor Toll-Like 5/efectos de los fármacos , Animales , Línea Celular Tumoral , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Protectores contra Radiación/farmacología , Transducción de Señal/efectos de los fármacos , Interleucina-22
9.
Sci Rep ; 11(1): 19396, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588551

RESUMEN

Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) components and represents a leading cause of morbidity and mortality worldwide. Previous studies of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/cirrhotic human livers, these profiles enable the identification of potential intercellular signaling axes (e.g., ITGAV-LAMC1, TNFRSF11B-VWF and NOTCH2-DLL4) and master regulators (e.g., RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire of translatable drug target candidates. Consistent with the above regulon results, gene regulatory network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. Together, this study highlights potential cell-cell interactions and master regulators that underlie HSC activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Transcriptoma , Animales , Voluntarios Sanos , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Análisis de la Célula Individual
10.
PLoS One ; 16(11): e0258700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34739484

RESUMEN

Protecting healthcare professionals is crucial in maintaining a functioning healthcare system. The risk of infection and optimal preventive strategies for healthcare workers during the COVID-19 pandemic remain poorly understood. Here we report the results of a cohort study that included pre- and asymptomatic healthcare workers. A weekly testing regime has been performed in this cohort since the beginning of the COVID-19 pandemic to identify infected healthcare workers. Based on these observations we have developed a mathematical model of SARS-CoV-2 transmission that integrates the sources of infection from inside and outside the hospital. The data were used to study how regular testing and a desynchronisation protocol are effective in preventing transmission of COVID-19 infection at work, and compared both strategies in terms of workforce availability and cost-effectiveness. We showed that case incidence among healthcare workers is higher than would be explained solely by community infection. Furthermore, while testing and desynchronisation protocols are both effective in preventing nosocomial transmission, regular testing maintains work productivity with implementation costs.


Asunto(s)
Infecciones Asintomáticas , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/economía , Personal de Salud , SARS-CoV-2 , Algoritmos , Análisis Costo-Beneficio , Infección Hospitalaria , Recolección de Datos , Atención a la Salud , Hospitales , Humanos , Tamizaje Masivo/métodos , Modelos Teóricos , Exposición Profesional , Pandemias , Riesgo , Procesos Estocásticos , Suiza/epidemiología
11.
Cell Mol Gastroenterol Hepatol ; 12(2): 745-767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33866021

RESUMEN

BACKGROUND & AIMS: Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS: The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS: Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS: Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.


Asunto(s)
Conductos Biliares/metabolismo , Claudina-3/deficiencia , Hígado/metabolismo , Hígado/patología , Envejecimiento/metabolismo , Animales , Proliferación Celular/genética , Claudina-3/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatectomía , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Hígado/ultraestructura , Regeneración Hepática , Ratones Endogámicos C57BL , Ratones Noqueados , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
12.
Biochim Biophys Acta ; 1793(10): 1597-603, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19682504

RESUMEN

N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Benzoquinonas/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Estabilidad de Enzimas/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lactamas Macrocíclicas/farmacología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Células U937
13.
NAR Genom Bioinform ; 2(1): lqaa002, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33575552

RESUMEN

Assessing similarity is highly important for bioinformatics algorithms to determine correlations between biological information. A common problem is that similarity can appear by chance, particularly for low expressed entities. This is especially relevant in single-cell RNA-seq (scRNA-seq) data because read counts are much lower compared to bulk RNA-seq. Recently, a Bayesian correlation scheme that assigns low similarity to genes that have low confidence expression estimates has been proposed to assess similarity for bulk RNA-seq. Our goal is to extend the properties of the Bayesian correlation in scRNA-seq data by considering three ways to compute similarity. First, we compute the similarity of pairs of genes over all cells. Second, we identify specific cell populations and compute the correlation in those populations. Third, we compute the similarity of pairs of genes over all clusters, by considering the total mRNA expression. We demonstrate that Bayesian correlations are more reproducible than Pearson correlations. Compared to Pearson correlations, Bayesian correlations have a smaller dependence on the number of input cells. We show that the Bayesian correlation algorithm assigns high similarity values to genes with a biological relevance in a specific population. We conclude that Bayesian correlation is a robust similarity measure in scRNA-seq data.

14.
J Clin Invest ; 116(9): 2493-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16955144

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Hígado/patología , MAP Quinasa Quinasa 4/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Receptor fas/toxicidad , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteína 11 Similar a Bcl2 , Muerte Celular , Cruzamientos Genéticos , Activación Enzimática , Hepatocitos/citología , Hepatocitos/fisiología , Inmunohistoquímica , Hígado/efectos de los fármacos , Glicoproteínas de Membrana/deficiencia , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas/deficiencia , Ligando Inductor de Apoptosis Relacionado con TNF , Factor de Necrosis Tumoral alfa/deficiencia
15.
Sci Rep ; 9(1): 6225, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996342

RESUMEN

High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown. We aimed to 1) determine the amount and orientation (apical-maternal versus basal-fetal) of placentally secreted apoA1 and apoE using human perfused placenta and primary trophoblast cell (PTC) culture, 2) compare apoA1 and apoE secretions of PTC with that of hepatocytes and 3) associate the obtained results with human blood levels by determining apoA1 and apoE concentrations in maternal and fetal serum samples. In perfused placenta and serum samples, apoA1 and apoE concentrations were significantly higher at the maternal compared to the fetal side. For apoE a similar trend was found in PTC. For apoA1, the secretion to the apical side declined over time while release to the basal side was stable resulting in significantly different apoA1 concentrations between both sides. Unexpectedly, PTC secreted significantly higher amounts of apoA1 and apoE compared to hepatocytes. Our data indicate that the placenta may play an important role in maternal and fetal cholesterol homeostasis via secretion of anti-atherogenic apos.


Asunto(s)
Apolipoproteína A-I/sangre , Apolipoproteínas E/sangre , Aterosclerosis/metabolismo , Colesterol/metabolismo , Feto/metabolismo , Homeostasis/fisiología , Trofoblastos/metabolismo , Adulto , Transporte Biológico/fisiología , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Embarazo
16.
Cell Death Dis ; 10(10): 749, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582741

RESUMEN

Lysosomal sequestration of anti-cancer compounds reduces drug availability at intracellular target sites, thereby limiting drug-sensitivity and inducing chemoresistance. For hepatocellular carcinoma (HCC), sorafenib (SF) is the first line systemic treatment, as well as a simultaneous activator of autophagy-induced drug resistance. The purpose of this study is to elucidate how combination therapy with the FDA-approved photosensitizer verteporfin (VP) can potentiate the antitumor effect of SF, overcoming its acquired resistance mechanisms. HCC cell lines and patient-derived in vitro and in vivo preclinical models were used to identify the molecular mechanism of action of VP alone and in combination with SF. We demonstrate that SF is lysosomotropic and increases the total number of lysosomes in HCC cells and patient-derived xenograft model. Contrary to the effect on lysosomal stability by SF, VP is not only sequestered in lysosomes, but induces lysosomal pH alkalinization, lysosomal membrane permeabilization (LMP) and tumor-selective proteotoxicity. In combination, VP-induced LMP potentiates the antitumor effect of SF, further decreasing tumor proliferation and progression in HCC cell lines and patient-derived samples in vitro and in vivo. Our data suggest that combination of lysosome-targeting compounds, such as VP, in combination with already approved chemotherapeutic agents could open a new avenue to overcome chemo-insensitivity caused by passive lysosomal sequestration of anti-cancer drugs in the context of HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Lisosomas/metabolismo , Sorafenib/farmacología , Verteporfina/farmacología , Álcalis/química , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Lisosomas/efectos de los fármacos , Masculino , Ratones , Modelos Biológicos , Proteínas de Neoplasias/toxicidad , Permeabilidad , Proteínas ras/metabolismo
17.
Hepatology ; 46(6): 1960-70, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17975826

RESUMEN

UNLABELLED: Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. CONCLUSION: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/metabolismo , Hemo/biosíntesis , Hepatocitos/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Humanos , Transducción de Señal
18.
Med Sci Monit ; 14(12): BR286-93, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19043363

RESUMEN

BACKGROUND: MHC-I down-regulation was described in foetal liver progenitors, and two different subsets of adult bone marrow derived stem cells. These cells, namely, MHC-I-/Thy1+ bone marrow derived liver stem cells (BMDLSC) and the multipotent adult progenitors (MAPC) differentiated into functioning hepatocytes. The aim of this paper was to characterize the MHC-I negative bone marrow compartment as it pertains to BMDLSC and MAPC. MATERIAL/METHODS: We performed multiparameter flow-cytometry analyses of the MHC-I negative compartment using hematopoietic (CD45, Ter119), and stem cell markers (Thy1.2, c-Kit, IL-3R, CD34) in adult mice. RESULTS: When analysing CD45 and Ter119 expression, the MHC-I negative bone marrow compartment divides into four sub-populations: 1. CD45-/Ter119+: 86.0+/-4.4%; 2. CD45+/Ter119+: 0.2+/-0.1%; 3. CD45+/Ter119-: 11.6+/-3.0%; 4. CD45-/Ter119-: 2.0+/-2.1%. Stem cells markers were only expressed on MHC-I negative/ CD45+/Ter119- cells. In vivo, MAPC (Ter119-/CD45- cells) are composed of MHC-I negative (24%) and MHC-I positive cells and do not express any of the stem cell markers tested. CONCLUSIONS: In conclusion, mouse BMDLSC and MAPC are two distinct stem cell populations. Down-regulation of MHC-I was the only common characteristic found between BMDLSC and MAPC suggesting that selection of MHC-I negative cells might represent an efficient strategy to enrich for bone marrow stem cells with liver developmental potential.


Asunto(s)
Células de la Médula Ósea/inmunología , Citometría de Flujo/métodos , Antígenos de Histocompatibilidad Clase I/análisis , Animales , Antígenos de Grupos Sanguíneos/análisis , Células de la Médula Ósea/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglobulina beta-2/metabolismo
19.
FEBS Lett ; 581(5): 989-94, 2007 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17316623

RESUMEN

NDRG1 is a hypoxia-inducible protein, whose modulated expression is associated with the progression of human cancers. Here, we reveal that NDRG1 is markedly upregulated in the cytoplasm and on the membrane in human hepatocellular carcinoma (HCC). We demonstrate further that hypoxic stress increases the cytoplasmic expression of NDRG1 in vitro, but does not result in its localization on the plasma membrane. However, grown within an HCC-xenograft in vivo, cells express NDRG1 in the cytoplasm and on the plasma membrane. In conclusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit requiring additional stimuli within the tumour microenvironment for its recruitment to the membrane.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Secuencia de Aminoácidos , Animales , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Trasplante de Neoplasias , Estructura Terciaria de Proteína , Trasplante Heterólogo
20.
J Gastrointest Surg ; 11(3): 280-5, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17458598

RESUMEN

Experimental partial hepatectomy of more than 80% of the liver weight bears an increased mortality in rodents, due to impaired hepatic regeneration in small-for-size liver remnants. Granulocyte colony-stimulating factor (G-CSF) promotes progenitor cell expansion and mobilization and also has immunomodulatory properties. The aim of this study was to determine the effect of systemically administered G-CSF on liver regeneration and animal survival in a small-for-size liver remnant mouse model. Mice were preconditioned daily for 5 days with subcutaneous injections of 5 microg G-CSF or aqua ad injectabile. Subsequently, 83% partial hepatectomy was performed by resecting the median, the left, the caudate, and the right inferior hepatic lobes in all animals. Daily sham or G-CSF injection was continued. Survival was significantly better in G-CSF-treated animals (P < 0.0001). At 36 and 48 h after microsurgical hepatic resection, markers of hepatic proliferation (Ki67, BrdU) were elevated in G-CSF-treated mice compared to sham injected control animals (P < 0.0001) and dry liver weight was increased (P < 0.05). G-CSF conditioning might prove to be useful in patients with small-for-size liver remnants after extended hepatic resections due to primary or secondary liver tumors or in the setting of split liver transplantation.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Hepatectomía , Regeneración Hepática/efectos de los fármacos , Hígado/patología , Animales , Bromodesoxiuridina , Proliferación Celular/efectos de los fármacos , Colorantes , Antígeno Ki-1/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA