Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(9): 2241-2247, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722104

RESUMEN

Nonnative species that escape their native-range parasites may benefit not only from reduced infection pathology, but also from relaxed selection on costly immune defenses, promoting reallocation of resources toward growth or reproduction. However, benefits accruing from a reduction in defense could come at the cost of increased infection susceptibility. We conducted common garden studies of the shore crab Hemigrapsus sanguineus from highly parasitized native (Japan) populations and largely parasite-free invasive (USA) populations to test for differences in susceptibility to infection by native-range rhizocephalan parasites, and to explore differences in host resource allocation. Nonnative individuals showed at least 1.8 times greater susceptibility to infection than their native counterparts, and had reduced standing metabolic rates, suggesting that less of their energy was spent on physiological self-maintenance. Our results support an indirect advantage to parasite escape via the relaxation of costly physiological defenses. However, this advantage comes at the cost of heightened susceptibility, a trade-off of parasite escape that is seldom considered.


Asunto(s)
Braquiuros/fisiología , Interacciones Huésped-Parásitos , Animales , Japón , Parásitos
2.
Oecologia ; 180(1): 137-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26440801

RESUMEN

Local adaptation may optimize an organism's investment in defenses in response to the risk of infection by spatially heterogeneous parasites and other natural enemies. However, local adaptation may be constrained if recruitment is decoupled from selective pressure experienced by the parent generation. We predicted that the ability of three intertidal littorinid snail species to defend against trematode parasites would depend on prior levels of population exposure to parasites and on larval dispersal mode, a proxy for population openness. In a common garden experiment, for two snail species with direct development and localized recruitment (Littorina obtusata and Littorina saxatilis), hosts from sites with high trematode infection risk were less susceptible to infection than hosts from low-risk sites. However, this relationship was not apparent for a third host species with broadcast larvae (Littorina littorea), suggesting that broad larval dispersal can impede local adaptation; alternatively, the lack of response in this species could owe to other factors that limited experimental infection in this host. Our findings support that locally recruiting hosts can adapt their defenses to scale with localized infection risk.


Asunto(s)
Adaptación Fisiológica , Parásitos , Caracoles/parasitología , Trematodos/crecimiento & desarrollo , Infecciones por Trematodos , Distribución Animal , Animales , Ecología , Interacciones Huésped-Parásitos , Larva/crecimiento & desarrollo , Caracoles/crecimiento & desarrollo , Especificidad de la Especie
3.
Adv Mar Biol ; 66: 87-169, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24182900

RESUMEN

Marine invasions have risen over time with enhanced globalization, and so has the introduction of non-native hosts and their parasites. An important and well-supported paradigm of invasion biology is the significant loss of parasites that hosts enjoy in introduced regions compared to native regions (i.e. parasite escape), yet less is known about the factors that influence parasite escape in marine systems. Here, we compile an up-to-date review of marine parasite invasions and test several hypotheses related to host invasion pathway that we suspected could influence parasite escape across the 31 host-parasite systems included in our investigation. In general, we continued to show significant support for parasite escape; however, escape varied among parasite taxa, with most taxa demonstrating moderate levels of escape and a few showing complete or no escape. Moreover, we revealed several important factors related to host taxa, geography, time, and vector of introduction that influenced parasite escape, and in some cases demonstrated significant interactions, revealing the complexity of the invasion pathway in filtering parasites from native to introduced regions. In some (but not all) cases, there was also evidence of invasive host advantages due to parasite escape, but more evidence is required to demonstrate clear support for the enemy release hypothesis. In general, our study revealed the need for further research across systems, especially in understudied regions of the world.


Asunto(s)
Enfermedades de los Peces/parasitología , Peces , Especies Introducidas , Moluscos/parasitología , Animales , Biodiversidad , Demografía , Interacciones Huésped-Patógeno , Análisis Multivariante , Océanos y Mares , Factores de Tiempo
4.
Front Zool ; 7: 3, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20205866

RESUMEN

BACKGROUND: The foraging behavior of blood-sucking arthropods is the defining biological event shaping the transmission cycle of vector-borne parasites. It is also a phenomenon that pertains to the realm of community ecology, since blood-feeding patterns of vectors can occur across a community of vertebrate hosts. Although great advances in knowledge of the genetic basis for blood-feeding choices have been reported for selected vector species, little is known about the role of community composition of vertebrate hosts in determining such patterns. METHODS & RESULTS: Here, we present an analysis of feeding patterns of vectors across a variety of locations, looking at foraging patterns of communities of mosquitoes, across communities of hosts primarily comprised of mammals and birds. Using null models of species co-occurrence, which do not require ancillary information about host abundance, we found that blood-feeding patterns were aggregated in studies from multiple sites, but random in studies from a single site. This combination of results supports the idea that mosquito species in a community may rely primarily on host availability in a given landscape, and that contacts with specific hosts will be influenced more by the presence/absence of hosts than by innate mosquito choices. This observation stresses the importance of blood-feeding plasticity as a key trait explaining the emergence of many zoonotic mosquito transmitted diseases. DISCUSSION: From an epidemiological perspective our observations support the idea that phenomena promoting synchronization of vectors and hosts can promote the emergence of vector-borne zoonotic diseases, as suggested by observations on the linkages between deforestation and the emergence of several human diseases.

5.
J Med Entomol ; 46(2): 220-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19351072

RESUMEN

Ecosystem changes caused by anthropogenic activities have modified the environment in ways that at times promote the emergence of vector-borne diseases. Here, we study the effects of combined sewage overflows (CSOs) from urban streams in Atlanta, GA, on oviposition site selection by Culex quinquefasciatus under seminatural field conditions. Counting egg rafts was a reliable indicator of oviposition preferences, and CSO water quality, especially when enriched, was a more attractive oviposition substrate than nonenriched water. Therefore, environmentally sound management of municipal waste water systems has the potential to diminish the risk of Culex-borne diseases in urban areas.


Asunto(s)
Culex , Oviposición , Óvulo , Aguas del Alcantarillado/parasitología , Urbanización , Animales , Femenino
6.
PLoS One ; 10(6): e0128674, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030816

RESUMEN

A common signature of marine invasions worldwide is a significant loss of parasites (= parasite escape) in non-native host populations, which may confer a release from some of the harmful effects of parasitism (e.g., castration, energy extraction, immune activation, behavioral manipulation) and possibly enhance the success of non-indigenous species. In eastern North America, the notorious invader Carcinus maenas (European green crab) has escaped more than two-thirds its native parasite load. However, one of its parasites, a trematode (Microphallus similis), can be highly prevalent in the non-native region; yet little is known about its potential impacts. We employed a series of laboratory experiments to determine whether and how M. similis infection intensity influences C. maenas, focusing on physiological assays of body mass index, energy storage, and immune activation, as well as behavioral analyses of foraging, shelter utilization, and conspicuousness. We found little evidence for enduring physiological or behavioral impacts four weeks after experimental infection, with the exception of mussel handling time which positively correlated with cyst intensity. However, we did find evidence for a short-term effect of M. similis infection during early stages of infection (soon after cercarial penetration) via a significant drop in circulating immune cells, and a significant increase in the crabs' righting response time. Considering M. similis is the only common parasite infecting C. maenas in eastern North America, our results for minimal lasting effects of the trematode on the crab's physiology and behavior may help explain the crab's continued prominence as a strong predator and competitor in the region.


Asunto(s)
Braquiuros/fisiología , Conducta Predatoria/fisiología , Trematodos/fisiología , Infecciones por Trematodos/fisiopatología , Animales , Bivalvos/fisiología , Femenino , Masculino , América del Norte , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA