Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361158

RESUMEN

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.


Asunto(s)
Potenciales de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/química , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Treonina/química , Sustitución de Aminoácidos , Sitios de Unión , Dolor Crónico/genética , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/fisiopatología , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Isoleucina/química , Isoleucina/metabolismo , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacología , Treonina/metabolismo
3.
Pain ; 160(6): 1327-1341, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720580

RESUMEN

The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell-derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.


Asunto(s)
Eritromelalgia/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción/efectos de los fármacos , Estimulación Eléctrica/métodos , Eritromelalgia/genética , Ganglios Espinales/citología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Nociceptores/fisiología , Dolor/diagnóstico , Dolor/genética , Técnicas de Placa-Clamp/métodos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA