RESUMEN
Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Transformación Celular Neoplásica , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Mutación , Metástasis de la Neoplasia , Procesamiento Proteico-PostraduccionalRESUMEN
Studying the early stages of cancer can provide important insight into the molecular basis of the disease. We identified a preneoplastic stage in the patched (ptc) mutant mouse, a model for the brain tumor medulloblastoma. Preneoplastic cells (PNCs) are found in most ptc mutants during early adulthood, but only 15% of these animals develop tumors. Although PNCs are found in mice that develop tumors, the ability of PNCs to give rise to tumors has never been demonstrated directly, and the fate of cells that do not form tumors remains unknown. Using genetic fate mapping and orthotopic transplantation, we provide definitive evidence that PNCs give rise to tumors, and show that the predominant fate of PNCs that do not form tumors is differentiation. Moreover, we show that N-myc, a gene commonly amplified in medulloblastoma, can dramatically alter the fate of PNCs, preventing differentiation and driving progression to tumors. Importantly, N-myc allows PNCs to grow independently of hedgehog signaling, making the resulting tumors resistant to hedgehog antagonists. These studies provide the first direct evidence that PNCs can give rise to tumors, and demonstrate that identification of genetic changes that promote tumor progression is critical for designing effective therapies for cancer.
Asunto(s)
Diferenciación Celular/fisiología , Meduloblastoma/patología , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Cerebelo/citología , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Proteínas Hedgehog/antagonistas & inhibidores , Ratones , Ratones SCID , Ratones Transgénicos , Células Madre/citología , Células Madre/efectos de los fármacos , Alcaloides de Veratrum/farmacologíaRESUMEN
The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets.
Asunto(s)
Técnicas Genéticas , Vectores Genéticos/genética , Lentivirus/genética , Interferencia de ARN , Animales , Neoplasias de la Mama/patología , Línea Celular , ADN Complementario/genética , Diagnóstico por Imagen , Femenino , Expresión Génica , Humanos , Luminiscencia , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The cerebellum is critical for motor coordination and cognitive function and is the target of transformation in medulloblastoma, the most common malignant brain tumor in children. Although the development of granule cells, the most abundant neurons in the cerebellum, has been studied in detail, the origins of other cerebellar neurons and glia remain poorly understood. Here we show that the murine postnatal cerebellum contains multipotent neural stem cells (NSCs). These cells can be prospectively isolated based on their expression of the NSC marker prominin-1 (CD133) and their lack of markers of neuronal and glial lineages (lin-). Purified prominin+ lin- cells form self-renewing neurospheres and can differentiate into astrocytes, oligodendrocytes and neurons in vitro. Moreover, they can generate each of these lineages after transplantation into the cerebellum. Identification of cerebellar stem cells has important implications for the understanding of cerebellar development and the origins of medulloblastoma.
Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/citología , Cerebelo/fisiología , Glicoproteínas/metabolismo , Interneuronas/metabolismo , Células Madre Multipotentes/metabolismo , Neuroglía/metabolismo , Péptidos/metabolismo , Antígeno AC133 , Animales , Animales Recién Nacidos , Antígenos CD , Astrocitos/citología , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Separación Celular , Cerebelo/metabolismo , Glicoproteínas/genética , Proteínas Hedgehog , Interneuronas/citología , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/fisiopatología , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Péptidos/genética , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Trasplante de Células Madre , Transactivadores/metabolismo , Transactivadores/farmacología , Factores de Transcripción/genéticaRESUMEN
Myc is an oncogenic transcription factor frequently dysregulated in human cancer. To identify pathways supporting the Myc oncogenic program, we used a genome-wide RNA interference screen to search for Myc-synthetic lethal genes and uncovered a role for the SUMO-activating enzyme (SAE1/2). Loss of SAE1/2 enzymatic activity drives synthetic lethality with Myc. Inactivation of SAE2 leads to mitotic catastrophe and cell death upon Myc hyperactivation. Mechanistically, SAE2 inhibition switches a transcriptional subprogram of Myc from activated to repressed. A subset of these SUMOylation-dependent Myc switchers (SMS genes) is required for mitotic spindle function and to support the Myc oncogenic program. SAE2 is required for growth of Myc-dependent tumors in mice, and gene expression analyses of Myc-high human breast cancers suggest that low SAE1 and SAE2 abundance in the tumors correlates with longer metastasis-free survival of the patients. Thus, inhibition of SUMOylation may merit investigation as a possible therapy for Myc-driven human cancers.
Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Genes myc , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Enzimas Activadoras de Ubiquitina/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Ciclo Celular , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/mortalidad , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Desnudos , Mitosis , Trasplante de Neoplasias , Interferencia de ARN , ARN Interferente Pequeño , Huso Acromático/fisiología , Sumoilación , Trasplante Heterólogo , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/metabolismoRESUMEN
Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment.
Asunto(s)
Linaje de la Célula , Eliminación de Gen , Meduloblastoma/patología , Lesiones Precancerosas/patología , Receptores de Superficie Celular/genética , Células Madre/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proliferación Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Hiperplasia , Integrasas/metabolismo , Ratones , Ratones Noqueados , Neuronas/patología , Receptores Patched , FenotipoRESUMEN
Morphogens play a critical role in most aspects of development, including expansion and patterning of the central nervous system. Activating germline mutations in components of the Hedgehog and Wnt pathways have provided evidence for the important roles morphogens play in the genesis of brain tumors such as cerebellar medulloblastoma. In addition, aberrant expression of transforming growth factor-beta (TGF-beta) superfamily members has been demonstrated to contribute to progression of malignant gliomas. This review summarizes our current knowledge about the roles of morphogens in central nervous system tumorigenesis.
Asunto(s)
Neoplasias Encefálicas/fisiopatología , Encéfalo/crecimiento & desarrollo , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Proteínas Hedgehog , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Transactivadores/fisiología , Factor de Crecimiento Transformador beta/fisiología , Proteínas WntRESUMEN
Medulloblastoma is the most common malignant brain tumor in children. It is thought to result from the transformation of granule cell precursors (GCPs) in the developing cerebellum, but little is known about the early stages of the disease. Here, we identify a pre-neoplastic stage of medulloblastoma in patched heterozygous mice, a model of the human disease. We show that pre-neoplastic cells are present in the majority of patched mutants, although only 16% of these mice develop tumors. Pre-neoplastic cells, like tumor cells, exhibit activation of the Sonic hedgehog pathway and constitutive proliferation. Importantly, they also lack expression of the wild-type patched allele, suggesting that loss of patched is an early event in tumorigenesis. Although pre-neoplastic cells resemble GCPs and tumor cells in many respects, they have a distinct molecular signature. Genes that mark the pre-neoplastic stage include regulators of migration, apoptosis and differentiation, processes crucial for normal development but previously unrecognized for their role in medulloblastoma. The identification and molecular characterization of pre-neoplastic cells provides insight into the early steps in medulloblastoma formation, and may yield important markers for early detection and therapy of this disease.
Asunto(s)
Neoplasias Cerebelosas/genética , Cerebelo/citología , Cerebelo/embriología , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/genética , Lesiones Precancerosas/genética , Receptores de Superficie Celular/genética , Análisis de Varianza , Animales , Apoptosis/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Células Cultivadas , Cartilla de ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas Histológicas , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Análisis por Micromatrices , Mutación/genética , Receptores Patched , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiologíaRESUMEN
Autologous bone grafting techniques involve the use of tissues that need to be extracted from healthy sites. This can lead to significant donor site morbidity that causes a one-site defect to become a two-site defect. Bone grafts can be especially difficult to manipulate, because bone is a relatively nonmoldable tissue. Furthermore, the inability of a bone graft to contain a transplantable vascular supply also limits the possible size that such a bone graft can be. Because of these limitations, a graft that was moldable with a vascular supply would possess significant advantages in reconstructive applications. In this research, gene therapy techniques were used to create such a graft. An adenovirus expressing BMP-9 was injected into the latissimus dorsi of a nude animal to cause bony differentiation of that muscle. Differentiation of the muscle to cartilage in bone was measured by reverse transcription polymerase chain reaction and immunohistochemistry to determine the optimal time of flap elevation. After injection of the BMP-9 virus, the animals were biopsied weekly over a 3-week period. Both bone and cartilage markers were discovered in these tissues over the study period. Optimal flap elevation time was established to be 2 weeks after injection of the virus.