Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurophysiol ; 123(6): 2382-2389, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374202

RESUMEN

Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation LRRK2-G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice. Moreover, mutant spiny projection neurons in nucleus accumbens (NAc) lack an adaptive, stress-induced change in excitability displayed by wt neurons, and instead show stress-induced changes in synaptic properties that wt neurons lack. Some synaptic alterations in NAc are already evident early in postnatal life. Thus G2019S alters the magnitude and direction of behavioral responses to stress that may reflect unique modifications of adaptive plasticity in cells and circuits implicated in psychopathology in humans.NEW & NOTEWORTHY Depression is associated with Parkinson's disease (PD), and environmental stress is a risk factor for both. We investigated how LRRK2-G2019S PD mutation affects depression-like behaviors, synaptic function, and intrinsic neuronal excitability following stress. In response to stress, the mutation drives abnormal synaptic changes, prevents adaptive changes in intrinsic excitability, and leads to aberrant behaviors, thus defining new ways in which PD mutations derail adaptive plasticity in response to stress that may contribute to disease onset.


Asunto(s)
Conducta Animal , Depresión , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Núcleo Accumbens , Enfermedad de Parkinson , Estrés Psicológico , Animales , Conducta Animal/fisiología , Depresión/etiología , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/fisiopatología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología
2.
J Neurosci ; 38(45): 9700-9711, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30249796

RESUMEN

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.


Asunto(s)
Relaciones Interpersonales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/genética , Resiliencia Psicológica , Estrés Psicológico/genética , Factores de Edad , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
3.
J Neurosci ; 37(31): 7547-7559, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28663197

RESUMEN

Calcium-dependent nuclear export of histone deacetylase 1 (HDAC1) was shown previously to precede axonal damage in culture, but the in vivo relevance of these findings and the potential posttranslational modifications of HDAC1 remained elusive. Using acute hippocampal slices from mice of either sex with genetic conditional ablation of Hdac1 in CA1 hippocampal neurons (i.e., Camk2a-cre;Hdac1fl/fl), we show significantly diminished axonal damage in response to neurotoxic stimuli. The protective effect of Hdac1 ablation was detected also in CA3 neurons in Grik4-cre;Hdac1fl/f mice, which were more resistant to the excitotoxic damage induced by intraventricular injection of kainic acid. The amino acid residues modulating HDAC1 subcellular localization were identified by site-directed mutagenesis, which identified serine residues 421 and 423 as critical for its nuclear localization. The physiological phosphorylation of HDAC1 was decreased by neurotoxic stimuli, which stimulated the phosphatase enzymatic activity of calcineurin. Treatment of neurons with the calcineurin inhibitors FK506 or cyclosporin A resulted in nuclear accumulation of phospho-HDAC1 and was neuroprotective. Together, our data identify HDAC1 and the phosphorylation of specific serine residues in the molecule as potential targets for neuroprotection.SIGNIFICANCE STATEMENT The importance of histone deacetylation in normal brain functions and pathological conditions is unquestionable, yet the molecular mechanisms responsible for the neurotoxic potential of histone deacetylase 1 (HDAC1) and its subcellular localization are not fully understood. Here, we use transgenic lines to define the in vivo relevance of HDAC1 and identify calcineurin-dependent serine dephosphorylation as the signal modulating the neurotoxic role of HDAC1 in response to neurotoxic stimuli.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Ácido Kaínico/envenenamiento , Neuronas/metabolismo , Serina/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Histona Desacetilasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotoxinas/envenenamiento , Fosforilación/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Distribución Tisular
4.
J Neurosci ; 36(27): 7128-41, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383589

RESUMEN

UNLABELLED: Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT: Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.


Asunto(s)
Cuerpo Estriado/patología , Regulación del Desarrollo de la Expresión Génica/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neuronas/fisiología , Enfermedad de Parkinson/genética , Animales , Animales Recién Nacidos , Cuerpo Estriado/fisiopatología , Dendritas/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/patología , Técnicas de Placa-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
5.
J Neurophysiol ; 113(3): 709-19, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25376789

RESUMEN

Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients.


Asunto(s)
Ritmo Gamma , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Núcleo Tegmental Pedunculopontino/fisiología , Animales , Trastorno Bipolar/metabolismo , Canales de Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Núcleo Tegmental Pedunculopontino/citología , Núcleo Tegmental Pedunculopontino/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/metabolismo
6.
Pflugers Arch ; 465(9): 1327-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23588378

RESUMEN

The parafascicular nucleus (Pf) is an ascending target of the pedunculopontine nucleus (PPN) and is part of the "non-specific" intralaminar thalamus. The PPN, part of the reticular activating system, is mainly involved in waking and rapid eye movement sleep. Gamma oscillations are evident in all Pf neurons and mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 9 to 19-day-old rat Pf neurons (n = 148, dye filled n = 61, control n = 87) were filled with Fura 2, Bis Fura, or Oregon Green BAPTA-1. Calcium transients were generated during depolarizing current ramps and visualized with a high-speed, wide-field fluorescence imaging system. Cells manifested calcium transients with oscillations in both somatic and proximal dendrite fluorescence recordings. Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or the combination of ω-Agatoxin-IVA (AgA), a specific P/Q-type calcium channel blocker and ω-conotoxin-GVIA (CgTx), a specific N-type calcium channel blocker. We developed a viable methodology for studying high-speed oscillations without the use of multi-photon imaging systems.


Asunto(s)
Señalización del Calcio , Núcleos Talámicos Intralaminares/metabolismo , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/farmacología , Núcleos Talámicos Intralaminares/citología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
7.
J Neurophysiol ; 107(3): 772-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22090455

RESUMEN

The parafascicular nucleus (Pf) receives cholinergic input from the pedunculopontine nucleus, part of the reticular activating system involved in waking and rapid eye movement (REM) sleep, and sends projections to the cortex. We tested the hypothesis that Pf neurons fire maximally at gamma band frequency (30-90 Hz), that this mechanism involves high-threshold voltage-dependent P/Q- and N-type calcium channels, and that this activity is enhanced by the cholinergic agonist carbachol (CAR). Patch-clamped 9- to 25-day-old rat Pf neurons (n = 299) manifested a firing frequency plateau at gamma band when maximally activated (31.5 ± 1.5 Hz) and showed gamma oscillations when voltage-clamped at holding potentials above -20 mV, and the frequency of the oscillations increased significantly with age (24.6 ± 3.8 vs. 51.6 ± 4.4 Hz, P < 0.001) but plateaued at gamma frequencies. Cells exposed to CAR showed significantly higher frequencies early in development compared with those without CAR (24.6 ± 3.8 vs. 41.7 ± 4.3 Hz, P < 0.001) but plateaued with age. The P/Q-type calcium channel blocker ω-agatoxin-IVA (ω-Aga) blocked gamma oscillations, whereas the N-type blocker ω-conotoxin-GVIA (ω-CgTx) only partially decreased the power spectrum amplitude of gamma oscillations. The blocking effect of ω-Aga on P/Q-type currents and ω-CgTx on N-type currents was consistent over age. We conclude that P/Q- and N-type calcium channels appear to mediate Pf gamma oscillations during development. We hypothesize that the cholinergic input to the Pf could activate these cells to oscillate at gamma frequency, and perhaps relay these rhythms to cortical areas, thus providing a stable high-frequency state for "nonspecific" thalamocortical processing.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Núcleos Talámicos Intralaminares/crecimiento & desarrollo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/efectos de los fármacos , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Núcleos Talámicos Intralaminares/efectos de los fármacos , Núcleos Talámicos Intralaminares/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , omega-Agatoxina IVA/farmacología
8.
Am J Physiol Cell Physiol ; 301(2): C327-35, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21543743

RESUMEN

The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons (n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35-80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range (n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314) intracellularly (n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR (n = 4, P < 0.05), NMDA (n = 4, P < 0.05) and KA (n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD neurons.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Agonistas Colinérgicos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Neuronas/efectos de los fármacos , Puente/efectos de los fármacos , Sueño REM/efectos de los fármacos , Potenciales de Acción , Análisis de Varianza , Animales , Técnicas In Vitro , Cinética , Modelos Lineales , Neuronas/fisiología , Oscilometría , Técnicas de Placa-Clamp , Puente/citología , Puente/fisiología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
9.
Eur J Neurosci ; 34(3): 404-15, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21722210

RESUMEN

The pedunculopontine nucleus (PPN), part of the reticular activating system, modulates waking and paradoxical sleep. During waking and paradoxical sleep, EEG responses are characterized by low-amplitude, high-frequency oscillatory activity in the beta-gamma band range (~20-80 Hz). We have previously reported that gamma band activity may be intrinsically generated by the membrane electroresponsiveness of PPN neurons, and that the neuronal ensemble generates different patterns of gamma activity in response to specific transmitters. This study attempted to identify the voltage-gated calcium and potassium channels involved in the rising and falling phases of gamma oscillations in PPN neurons. We found that all rat (8-14 day) PPN cell types showed gamma oscillations in the presence of TTX and synaptic blockers when membrane potential was depolarized using current ramps. PPN neurons showed gamma oscillations when voltage-clamped at holding potentials above -30 mV, suggesting that their origin may be spatially located beyond voltage-clamp control. The average frequency for all PPN cell types was 23 ± 1 Hz and this increased under carbachol (47 ± 2 Hz; anova df = 64, t = 12.5, P < 0.001). The N-type calcium channel blocker ω-conotoxin-GVIA partially reduced gamma oscillations, while the P/Q-type blocker ω-agatoxin-IVA abolished them. Both ω-CgTX and ω-Aga blocked voltage-dependent calcium currents, by 56 and 52% respectively. The delayed rectifier-like potassium channel blocker α-dendrotoxin also abolished gamma oscillations. In carbachol-induced PPN population responses, ω-agatoxin-IVA reduced higher, and ω-CgTx mostly lower, frequencies. These results suggest that voltage-dependent P/Q- and, to a lesser extent, N-type calcium channels mediate gamma oscillations in PPN.


Asunto(s)
Electroencefalografía , Potenciales de la Membrana/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Sueño/fisiología , Animales , Canales de Calcio Tipo N/metabolismo , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Núcleo Tegmental Pedunculopontino/citología , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Péptidos/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Ratas Sprague-Dawley , Venenos de Serpiente , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , omega-Agatoxina IVA/farmacología , omega-Conotoxina GVIA/farmacología
10.
J Neurophysiol ; 104(1): 463-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20463196

RESUMEN

The pedunculopontine nucleus (PPN) is involved in the activated states of waking and paradoxical sleep, forming part of the reticular activating system (RAS). The studies described tested the hypothesis that single unit and/or population responses of PPN neurons are capable of generating gamma band frequency activity. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. Regardless of cell type (I, II, or III) or type of response to the nonselective cholinergic receptor agonist carbachol (excitation, inhibition, biphasic), almost all PPN neurons fired at gamma band frequency, but no higher, when subjected to depolarizing steps (50 +/- 2 Hz, mean +/- SE). Nonaccommodating neurons fired at 18-100 Hz throughout depolarizing steps, while most accommodating neurons exhibited gamma band frequency of action potentials followed by gamma band membrane oscillations. These oscillations were blocked by the sodium channel blocker tetrodotoxin (TTX), suggesting that at least some are mediated by sodium currents. Population responses in the PPN showed that carbachol induced peaks of activation in the theta and gamma range, while glutamatergic receptor agonists induced overall increases in activity at theta and gamma frequencies, although in differing patterns. Gamma band activity appears to be a part of the intrinsic membrane properties of PPN neurons, and the population as a whole generates different patterns of gamma band activity under the influence of specific transmitters. Given sufficient excitation, the PPN may impart gamma band activation on its targets.


Asunto(s)
Electroencefalografía/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/fisiología , Potenciales de Acción/fisiología , Animales , Carbacol/farmacología , Fenómenos Electrofisiológicos , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Kaínico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Agonistas Muscarínicos/farmacología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Núcleo Tegmental Pedunculopontino/citología , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Ritmo Teta/efectos de los fármacos
11.
Front Synaptic Neurosci ; 12: 581714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613257

RESUMEN

In humans, copy number variations in CYFIP1 appear to have sweeping physiological and structural consequences in the brain, either producing or altering the severity of intellectual disability, autism, and schizophrenia. Independently, SynGAP1 haploinsufficiency produces intellectual disability and, frequently, autism. Cyfip1 inhibits protein translation and promotes actin polymerization, and SynGAP1 is a synaptically localized Ras/Rap GAP. While these proteins are clearly distinct, studies investigating their functions in mice have shown that each regulates the maturation of synapses in the hippocampus and haploinsufficiency for either produces an exaggerated form of mGluR-dependent long-term depression, suggesting that some signaling pathways converge. In this study, we examined how Cyfip1 haploinsufficiency impacts SynGAP1 levels and localization, as well as potential sites for mechanistic interaction in mouse hippocampus. The data show that synaptic, but not total, levels of SynGAP1 in Cyfip1 +/- mice were abnormally low during early postnatal development and in adults. This may be in response to a shift in the balance of kinases that activate SynGAP1 as levels of Cdk5 were reduced and those of activated CaMKII were maintained in Cyfip1 +/- mice compared to wild-type mice. Alternatively, this could reflect altered actin dynamics as Rac1 activity in Cyfip1 +/- hippocampus was boosted significantly compared to wild-type mice, and levels of synaptic F-actin were generally enhanced due in part to an increase in the activity of the WAVE regulatory complex. Decreased synaptic SynGAP1 coupled with a CaMKII-mediated bias toward Rap1 inactivation at synapses is also consistent with increased levels of synaptic GluA2, increased AMPA receptor-mediated responses to stimulation, and increased levels of synaptic mGluR1/5 compared to wild-type mice. Collectively, our data suggest that Cyfip1 regulates SynGAP1 and the two proteins work coordinately at synapses to appropriately direct actin polymerization and GAP activity.

12.
Brain Commun ; 2(2): fcaa100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005890

RESUMEN

Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.

13.
ACS Pharmacol Transl Sci ; 2(6): 485-490, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-32259079

RESUMEN

In 2018, the United States Food and Drug Administration (FDA) approved Aimovig (erenumab) for the prevention of migraine. Erenumab is the first FDA approved antibody therapeutic against a G-protein-coupled receptor, the canonical receptor of calcitonin gene related peptide (CGRP-R). A novel, epitope-focused antigen was created to reconstruct the extracellular domains of the CGRP-R in a stable conformation. Successful inoculation of XenoMouse animals and careful screening yielded multiple candidate molecules for high potency and exquisite selectivity toward the CGRP-R over related receptors. These efforts led to the discovery of erenumab which has demonstrated the desired efficacy and safety profiles in multiple clinical studies for the prevention of migraine. The innovation developed in the discovery of erenumab furthers the ability to target G-coupled protein receptors using antibody approaches.

14.
Nat Neurosci ; 20(9): 1247-1259, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28783139

RESUMEN

Antipsychotic drugs remain the standard for schizophrenia treatment. Despite their effectiveness in treating hallucinations and delusions, prolonged exposure to antipsychotic medications leads to cognitive deficits in both schizophrenia patients and animal models. The molecular mechanisms underlying these negative effects on cognition remain to be elucidated. Here we demonstrate that chronic antipsychotic drug exposure increases nuclear translocation of NF-κB in both mouse and human frontal cortex, a trafficking event triggered via 5-HT2A-receptor-dependent downregulation of the NF-κB repressor IκBα. This upregulation of NF-κB activity led to its increased binding at the Hdac2 promoter, thereby augmenting Hdac2 transcription. Deletion of HDAC2 in forebrain pyramidal neurons prevented the negative effects of antipsychotic treatment on synaptic remodeling and cognition. Conversely, virally mediated activation of NF-κB signaling decreased cortical synaptic plasticity via HDAC2. Together, these observations may aid in developing therapeutic strategies to improve the outcome of schizophrenia treatment.


Asunto(s)
Antipsicóticos/efectos adversos , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/metabolismo , Histona Desacetilasa 2/metabolismo , FN-kappa B/metabolismo , Sinapsis/metabolismo , Animales , Antipsicóticos/toxicidad , Trastornos del Conocimiento/genética , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Células HEK293 , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/genética , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/genética , Sinapsis/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología
15.
J Appl Physiol (1985) ; 115(9): 1402-14, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23990242

RESUMEN

The pedunculopontine nucleus (PPN) is a component of the reticular activating system (RAS), and is involved in the activated states of waking and rapid eye movement (REM) sleep. Gamma oscillations (approximately 30-80 Hz) are evident in all PPN neurons and are mediated by high-threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in dendritic compartments in synchrony with patch-clamp recorded oscillations during depolarizing current ramps. Patch-clamped 8- to 16-day-old rat PPN neurons (n = 67 out of 121) were filled with Fura 2, Bis Fura, or OGB1/CHR. This study also characterized a novel ratiometric technique using Oregon Green BAPTA-1 (OGB1) with coinjections of a new long-stokes-shift dye, Chromeo 494 (CHR). Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker cadmium, or by the combination of ω-agatoxin-IVA, a specific P/Q-type calcium channel blocker, and ω-conotoxin-GVIA, a specific N-type calcium channel blocker. The calcium transients were evident in different dendrites (suggesting channels are present throughout the dendritic tree) along the sampled length without interruption (suggesting channels are evenly distributed), and appeared to represent a summation of oscillations present in the soma. We confirm that PPN calcium channel-mediated oscillations are due to P/Q- and N-type channels, and reveal that these channels are distributed along the dendrites of PPN cells.


Asunto(s)
Señalización del Calcio/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Front Neurol ; 4: 176, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223570

RESUMEN

We previously reported that persistent application of the non-specific cholinergic agonist carbachol (CAR) increased the frequency of calcium channel-mediated oscillatory activity in pedunculopontine nucleus (PPN) neurons, which we identified as dependent on voltage-gated, high-threshold P/Q-type channels. Here, we tested the hypothesis that M2 muscarinic receptors and G-proteins associated with M2 receptors mediate the increase in oscillatory frequency in PPN neurons. We found, using depolarizing ramps, that patch clamped 9-12 day old rat PPN neurons (n = 189) reached their peak oscillatory activity around -20 mV membrane potential. Acute (short duration) application of CAR blocked the oscillatory activity through M2 muscarinic receptors, an effect blocked by atropine. However, persistent (long duration) application of CAR significantly increased the frequency of oscillatory activity in PPN neurons through M2 receptors [40 ± 1 Hz (with CAR) vs. 23 ± 1 Hz (without CAR); p < 0.001]. We then tested the effects of the G-protein antagonist guanosine 5'-[ß-thio] diphosphate trilithium salt (GDP-ß-S), and the G-protein agonist 5'-[γ-thio] triphosphate trilithium salt (GTP-γ-S). We found, using a three-step protocol in voltage-clamp mode, that the increase in the frequency of oscillations induced by M2 cholinergic receptors was linked to a voltage-dependent G-protein mechanism. In summary, these results suggest that persistent cholinergic input creates a permissive activation state in the PPN that allows high frequency P/Q-type calcium channel-mediated gamma oscillations to occur.

17.
Sleep Med Rev ; 17(3): 227-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23044219

RESUMEN

This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.


Asunto(s)
Formación Reticular/fisiopatología , Sueño/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Concienciación/efectos de los fármacos , Concienciación/fisiología , Compuestos de Bencidrilo/farmacología , Ritmo beta/efectos de los fármacos , Ritmo beta/fisiología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Electroencefalografía/efectos de los fármacos , Humanos , Núcleos Talámicos Intralaminares/efectos de los fármacos , Núcleos Talámicos Intralaminares/fisiopatología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiopatología , Modafinilo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/fisiopatología , Puente/fisiopatología , Formación Reticular/efectos de los fármacos , Procesamiento de Señales Asistido por Computador , Sueño/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
18.
Front Neurol ; 3: 6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319508

RESUMEN

This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of pre-conscious awareness, and provide the essential stream of information for the formulation of many of our actions.

19.
Proc Okla Acad Sci ; 90: 55-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-24839330

RESUMEN

Bacteroidales are fecal anaerobic bacteria that are common in the digestive systems and feces of warm-blooded animals. Some strains of Bacteroidales have been reported to be host-specific. In this study, Bacteroidales strains from chicken feces were examined for their potential use as indicators of chicken fecal contamination. Bacteroidales 16S rRNA gene sequences from chicken feces were amplified, cloned and sequenced. Phylogenetic analysis was performed using these sequences and published Bacteroidales 16S rRNA gene sequences from human and bovine feces. Primers were designed based on putative chicken feces-specific 16S rRNA gene sequences and the primer pairs were tested for specificity in PCR assays. One set of primers, chBact F1 and chBact R16, specifically amplified DNA from chicken feces in a PCR assay, but did not amplify wild turkey, cat, bovine, or deer fecal DNAs. In addition, DNA from feces contaminated straw-based chicken litter produced a product in the PCR assay. However, DNA from feces contaminated wood shavings-based chicken litter was not amplified. The PCR assay described here may prove a useful tool for the detection of chicken feces and for source tracking in watersheds with fecal contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA