Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Mater ; 35(21): 9064-9072, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37982006

RESUMEN

Lead-free perovskite nanocrystals are of interest due to their nontoxicity and potential application in the display industry. However, engineering their optical properties is nontrivial and demands an understanding of emission from both self-trapped and free excitons. Here, we focus on tuning silver-based double perovskite nanocrystals' optical properties via two iso-valent dopants, Bi and Sb. The photoluminescence quantum yield of the intrinsic Cs2Ag1-yNayInCl6 perovskite increased dramatically upon doping. However, the two dopants affect the optical properties very differently. We hypothesize that the differences arise from their differences in electronic level contributions and ionic sizes. This hypothesis is validated through absorption and temperature dependence photoluminescence measurements, namely, by employing the Huang-Rhys factor, which indicates the coupling of the exciton to the lattice environment. The larger ionic size of Bi also plays a role in inducing significant microstraining verified via synchrotron measurements. These differences make Bi more sensitive to doping concentration over antimony which displays brighter emission (QY ∼40%). Such understanding is important for engineering optical properties in double perovskites, especially in light of recent achievements in boosting the photoluminescence quantum yield.

2.
Chem Mater ; 33(7): 2370-2377, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-34267421

RESUMEN

Lead-free double perovskites are studied as an optional replacement to lead halide perovskites in optoelectronic applications. Recently, double-perovskite materials in which two divalent lead cations are replaced with an Ag+ and a trivalent cation have been demonstrated. The presence of a reactive silver cation and observations of metallic silver nanodecorations raised concerns regarding the stability and applicability of these materials. To better understand the nucleation and crystal growth of lead-free double perovskites, we explore the origin and role that metallic silver nanoparticles (NPs) play in the Ag-based Pb-free double-perovskite nanocrystal (NC) systems such as Cs2AgInCl6, Cs2AgSbCl6, Cs2AgBiCl6, and Cs2AgBiBr6. With major focus on Cs2AgInCl6 NCs, we show evidence supporting growth of the NCs through heterogeneous nucleation on preexisting metallic silver seeds. The silver seeds nucleate prior to injection of halide through reduction of the Ag+ ion by the aminic ligand. The presence of preexisting silver NPs is supported by a localized surface plasmon resonance (LSPR). The injection of halide precursor into the reaction mixture step initiates a fast nucleation and growth of the perovskite NC on the silver seed. The change in the dielectric medium at the interface of the silver NP results in a quantifiable red shift of the LSPR peak. In addition, we demonstrate charge transfer from the perovskite to the silver NP through photoinduced electrochemical Ostwald ripening of the silver NPs via UV irradiation. The ripened perovskite-metal hybrid nanocrystal exhibits modified optical properties in the form of quenched emission and enhanced plasmonic absorption. Future development of Ag-based double-perovskite NC applications depends on the ability to control Ag+ reduction at all synthetic stages. This understanding is critical for delivering stability and functionality for silver-based lead-free perovskite nanocrystals.

3.
Nanoscale ; 11(18): 8665-8679, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31012899

RESUMEN

In this topical review, we have focused on the recent advances made in the studies of lead-free perovskites in the bulk form and as nanocrystals. Substitution of lead in halide perovskites is essential to overcome the toxicity concerns and improve the relatively low stability of these materials. In lead-free double perovskites the unit cell is doubled and two divalent lead cations are replaced by mono and trivalent cations. The current main challenge with the double perovskite metal halides lies in overcoming their inherently indirect and disallowed optical transitions. In this review, we have discussed the recent discoveries made in the synthesis of these materials and highlighted how nanocrystals can serve as model systems to explore the schemes of cationic exchange, doping and alloying for engineering the electronic structure of double perovskites. In nanocrystals, the quantum confinement effects can modify the electronic structure and the resulting optical transition, thus increasing the absorption cross-section and emission, which are important properties for optoelectronic devices. Lastly, the enlarged surface to volume ratio in the nanocrystals adds a surface energy term that may enhance the stability of the metastable crystallographic phases. We have reviewed how the nanocrystal can provide information on phases that are inherently stable and investigated how the facile exchange reactions can help in achieving material compositions that are impossible to achieve by any other way. Finally, based on our recent synthetic experience, we have emphasized the similarities between lead-based and lead-free perovskite nanocrystals; we hope that our insight along with a summary of recent progress in this fast-growing field will help to expand the interest in lead-free perovskites towards a greener and brighter future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA