Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37688072

RESUMEN

Security and privacy are among the main challenges in the systems of systems. The distributed ledger technology and self-sovereign identity pave the way to empower systems and users' security and privacy. By utilizing both technologies, this paper proposes a distributed and self-sovereign-based framework for systems of systems to increase the security of such a system and maintain users' privacy. We conducted an extensive security analysis of the proposed framework using a threat model based on the STRIDE framework, highlighting the mitigation provided by the proposed framework compared to the traditional SoS security. The analysis shows the feasibility of the proposed framework, affirming its capability to establish a secure and privacy-preserving identity management system for systems of systems.

2.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36433537

RESUMEN

In this paper, a detailed review of microcontroller unit (MCU)-based wireless sensor node platforms from recently published research articles is presented. Despite numerous research efforts in the fast-growing field of wireless sensor devices, energy consumption remains a challenge that limits the lifetime of wireless sensor networks (WSNs). The Internet-of-Things (IoT) technology utilizes WSNs for providing an efficient sensing and communication infrastructure. Thus, a comparison of the existing wireless sensor nodes is crucial. Of particular interest are the advances in the recent MCU-based wireless sensor node platforms, which have become diverse and fairly advanced in relation to the currently available commercial WSN platforms. The recent wireless sensor nodes are compared with commercially available motes. The commercially available motes are selected based on a number of criteria including popularity, published results, interesting characteristics and features. Of particular interest is to understand the trajectory of development of these devices and the technologies so as to inform the research and application directions. The comparison is mainly based on processing and memory specifications, communication capabilities, power supply and consumption, sensor support, potential applications, node programming and hardware security. This paper attempts to provide a clear picture of the progress being made towards the design of autonomous wireless sensor nodes to avoid redundancy in research by industry and academia. This paper is expected to assist developers of wireless sensor nodes to produce improved designs that outperform the existing motes. Besides, this paper will guide researchers and potential users to easily make the best choice of a mote that best suits their specific application scenarios. A discussion on the wireless sensor node platforms is provided, and challenges and future research directions are also outlined.

3.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34640805

RESUMEN

The remarkable evolution of the IoT raised the need for an efficient way to update the device's firmware. Recently, a new process was released summarizing the steps for firmware updates over the air (FUOTA) on top of the LoRaWAN protocol. The FUOTA process needs to be completed quickly to reduce the systems' interruption and, at the same time, to update the maximum number of devices with the lowest power consumption. However, as the literature showed, a single gateway cannot optimize the FUOTA procedure and offer the above mentioned goals since various trade-offs arise. In this paper, we conducted extensive experiments via simulation to investigate the impact of multiple gateways during the firmware update process. To achieve that, we extended the FUOTAsim simulation tool to support multiple gateways. The results revealed that several gateways could eliminate the trade-offs that appeared using a single gateway.

4.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635166

RESUMEN

Wireless sensor networks (WSNs) are increasingly gaining popularity, especially with the advent of many artificial intelligence (AI) driven applications and expert systems. Such applications require specific relevant sensors' data to be stored, processed, analyzed, and input to the expert systems. Obviously, sensor nodes (SNs) have limited energy and computation capabilities and are normally deployed remotely over an area of interest (AoI). Therefore, proposing efficient protocols for sensing and sending data is paramount to WSNs operation. Nodes' clustering is a widely used technique in WSNs, where the sensor nodes are grouped into clusters. Each cluster has a cluster head (CH) that is used to gather captured data of sensor nodes and forward it to a remote sink node for further processing and decision-making. In this paper, an optimization algorithm for adjusting the CH location with respect to the nodes within the cluster is proposed. This algorithm aims at finding the optimal CH location that minimizes the total sum of the nodes' path-loss incurred within the intra-cluster communication links between the sensor nodes and the CH. Once the optimal CH is identified, the CH moves to the optimal location. This suggestion of CH re-positioning is frequently repeated for new geometric position. Excitingly, the algorithm is extended to consider the inter-cluster communication between CH nodes belonging to different clusters and distributed over a spiral trajectory. These CH nodes form a multi-hop communication link that convey the captured data of the clusters' nodes to the sink destination node. The performance of the proposed CH positioning algorithm for the single and multi-clusters has been evaluated and compared with other related studies. The results showed the effectiveness of the proposed CH positioning algorithm.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 319-322, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268341

RESUMEN

Late development and evolution of high degree-of-freedom (DOF) robotic hands have seen great technological strides to enhance the quality of life for amputated people. A robust hand kinematic estimation mechanisms have shown promising results to control robotic hands that can mimic the human hand functions and perform daily life hand dexterous tasks. In this paper, we propose an ensemble-based regression approach for continuous estimation of wrist and fingers movements from surface Electromyography (sEMG) signals. The proposed approach extracts time-domain features from the sEMG signals, and uses Gradient Boosted Regression Tree (GBRT) ensembles to estimate the kinematics of the wrist and fingers. Furthermore, we propose two different performance evaluation procedures to demonstrate the efficacy of the approach in providing a feasible approach towards accurately estimating hand kinematics.


Asunto(s)
Algoritmos , Electromiografía/métodos , Dedos/fisiología , Movimiento/fisiología , Muñeca/fisiología , Fenómenos Biomecánicos , Ejercicio Físico/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA