RESUMEN
PURPOSE OF REVIEW: Both HIV infection and preeclampsia (PE), a pregnancy-specific disorder of hypertension and multi-system organ involvement, have high prevalence rates especially in low-to-middle-income countries. The immunoexpression of specific renin-angiotensin-aldosterone system (RAAS) receptors in the placenta and placental bed interface may forecast the risk of PE. RECENT FINDINGS: Preeclampsia is a leading risk factor for mortality worldwide and remains a challenge in HIV-infected individuals especially those on antiretroviral therapy (ART). Irregular RAAS stimulation may be linked to the pathophysiology of hypertension in HIV infection and in PE. The AT1 receptor is expressed across all trimesters of pregnancy, within placental tissue, eliciting vasoconstriction. This increased expression is associated with the severity of PE, implying that the increased expression may be involved in the pathogenesis of this pregnancy disorder. The AT2 receptor expression in normotensive pregnancies was shown to be lower as compared to non-pregnant individuals. Furthermore, in the PE placental bed, the AT2 receptor is the predominant receptor subtype and is found in extravillous trophoblast cells where they facilitate vasodilation. However, AT4R in placentae of PE pregnancies are found to be significantly reduced compared to normotensives pregnancies. The data on the role played by the RAAS pathway in pregnancy is conflicting. Investigation into a tissue-based RAAS with emphasis on immune-expression within the placenta and placental bed may help resolve this conundrum.
Asunto(s)
Infecciones por VIH , Hipertensión , Preeclampsia , Femenino , Infecciones por VIH/complicaciones , Humanos , Hipertensión/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Embarazo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-AngiotensinaRESUMEN
Introduction: This review explores angiogenesis, vascular dysfunction, the complement system, RAAS, apoptosis and NETosis as potential pathways that are dysregulated during preeclampsia, HIV infection and ART usage. Results: HIV-1 accessory and matrix proteins are protagonists for the elevation of oxidative stress, apoptosis, angiogenesis, and elevation of adhesion markers. Despite the immunodeficiency during HIV-1 infection, HIV-1 exploits our cellular defence arsenal by escaping cell-mediated lysis, yet HIV-1 infectivity is enhanced via C5a release of TNF-α and IL-6. This review demonstrates that PE is an oxidatively stressed microenvironment associated with increased apoptosis and NETosis, but with a decline in angiogenesis. Immune reconstitution in the duality of HIV-1 and PE by protease inhibitors, HAART and nucleoside reverse transcriptase, affect similar cellular pathways that eventuate in loss of endothelial cell integrity and, hence, its dysfunction. Conclusions: HIV-1 infection, preeclampsia and ARTs differentially affect endothelial cell function. In the synergy of both conditions, endothelial dysfunction predominates. This knowledge will help us to understand the effect of HIV infection and ART on immune reconstitution in preeclampsia.
Asunto(s)
Infecciones por VIH/complicaciones , Preeclampsia/metabolismo , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Apoptosis , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Trampas Extracelulares/metabolismo , Femenino , Humanos , Neovascularización Fisiológica , Estrés Oxidativo , Preeclampsia/virología , EmbarazoRESUMEN
Racial disparities exist in the prevalence of preeclampsia (PE), with women of African ancestry suffering the highest rates of morbidity and mortality. Genetic changes may play a role in the preponderance of PE among women of African ancestry. This review discusses 30 genes with variants that have been studied in PE in women of African ancestry. These studies found that a single gene is not responsible for PE susceptibility as 13 genes have been implicated. These genes subserve endothelial, immune, hemodynamic, homeostatic, thrombophilic, oxidative stress, and lipid metabolic pathways. Notably, maternal-fetal gene interactions also contribute to the susceptibility of the disease. For instance, the maternal KIR AA genotype and paternally inherited fetal HLA-C2 genotype confer risk for developing PE. Additionally, genetic changes such as epigenetic modulation of expression of the MTHFR gene through DNA methylation is also associated with the occurrence of PE. In contrast, some genes such as the KIR B centromeric region protect against development of PE in some women. The soluble fms-like tyrosine kinase 1 (sFlt-1) contributes to the development of PE and is a potential novel therapeutic option for targeted gene silencing of anti-angiogenic sFLT-1 gene. Additionally, NOS3 gene is an important target for pharmacogenomics because it is responsible for the production of endothelial nitric oxide. In conclusion, maternal genetic and epigenetic variants confer susceptibility to PE, indicating the need for further studies to develop a screening tool incorporating maternal genetic variants to identify women at high risk for PE and offer them a preventive therapy.
Asunto(s)
Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Factor A de Crecimiento Endotelial Vascular/genética , Feto , Genotipo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , BiomarcadoresRESUMEN
This review explores the role of transmembrane neuropilin-1 (NRP-1) in pregnancy, preeclampsia (PE), human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Since these conditions are assessed independently, this review attempts to predict their comorbid clinical manifestations. Dysregulation of NRP-1 contributes to the pathogenesis of PE by (a) impairing vascular endothelial growth factor (VEGF) signaling for adequate spiral artery remodeling and placentation, (b) inducing syncytiotrophoblast (ST) cell apoptosis and increasing ST-derived microparticle circulation and (c) by decreasing regulatory T cell activity predisposing maternal immune intolerance. Although NRP-1 is upregulated in SARS-CoV-2 placentae, its exploitation for SARS-CoV-2 internalization and increased infectivity may alter angiogenesis through the competitive inhibition of VEGF. The anti-inflammatory nature of NRP-1 may aid its upregulation in HIV-1 infection; however, the HIV-accessory protein, tat, reduces NRP-1 expression. Upregulated NRP-1 in macrophages and dendritic cells also demonstrated HIV-1 resistance/reduced infectivity. Notably, HIV-1-infected pregnant women receiving antiretroviral therapy (ART) to prevent vertical transmission may experience immune reconstitution, impaired decidualization, and elevated markers of endothelial injury. Since endothelial dysfunction and altered immune responses are central to PE, HIV-1 infection, ART usage and SARS-CoV-2 infection, it is plausible that an exacerbation of both features may prevail in the synergy of these events. Additionally, this review identifies microRNAs (miRNAs) mediating NRP-1 expression. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 and SARS-CoV-2 infection, implicating treatment strategies to reduce these miRNAs to upregulate and normalize NRP-1 expression. However, inconsistencies in the data of the role and regulation of miRNAs in PE, HIV-1 and SARS-CoV-2 infections require clarification. This review provides a platform for early diagnosis and potential therapeutic intervention of PE, HIV-1, and SARS-CoV-2 infections independently and as comorbidities.