Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Biol Rep ; 49(5): 3559-3567, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35553331

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is considered to be one of the most pivotal causes of death in the world. Over the past two decades, significant changes occurred in the diagnosis, prognosis, and treatment of CAD, which has helped reduce mortality rates. microRNAs (miRs) are a class of more than 5000 non-encoding RNA molecules (21-25 nucleotides across the length) that regulate complex biological processes. Today, miRNAs are used to study cardiovascular diseases. In the present study, the expression of miR-146a،miR-27, miR-149, and miR-34a in plasma suffering from CAD and the control group were investigated. METHODS AND RESULTS: The present research was performed on 30 men with CAD and 30 healthy men as controls. The expression levels of miR-146a, miR-27a, miR-149, and miR-34a in the plasma of patients with CAD and the control group were measured using real-time PCR. Also, the correlation between the expression of circulating miRs levels and biochemical LDL-C, HDL-C, BMI, and total cholesterol was evaluated. The expression of miR-27a in the plasma of the CAD group was higher than in the control group (p = 0.020). The expression of miR-146a was downregulated in CAD patients compared to normal subjects (p = 0. 026). However, the expression of miR-34a, miR-149 in the plasma of CAD patients was not significantly different with the control group. In addition to, a direct correlation was found between the expression of miR-146a and HDL-c, the expression of miR-27a and LDL-C and the expression of miR-34a and total cholesterol. Also, the negative correlation between expressions of miR-149 with BMI was reported. CONCLUSION: The obtained results demonstrated that miRs were closely related to biochemical factors and it points out the fact that miRNAs can be applied as a potential strategy for diagnosis and treatment of CAD.


Asunto(s)
MicroARN Circulante , Enfermedad de la Arteria Coronaria , MicroARNs , LDL-Colesterol , MicroARN Circulante/genética , Enfermedad de la Arteria Coronaria/metabolismo , Humanos , Masculino , MicroARNs/metabolismo
2.
Mol Biol Rep ; 49(1): 131-138, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34731367

RESUMEN

BACKGROUND: Recent investigations suggested that deregulated levels of Circular RNAs (circRNAs) could be associated with type 2 diabetes mellitus (T2DM) pathogenesis. Accordingly, this study aimed to determine the expression levels of circulating CircHIPK3, CDR1as and their correlation with biochemical parameters in patients with T2DM, pre-diabetes and control subjects. METHODS AND RESULTS: The expression of circRNAs in peripheral blood was determined using QRT-PCR in 70 patients with T2DM, 60 pre-diabetes and in 69 age and sex matched healthy controls. Moreover, bioinformatics tools were applied to explore and predict the potential interactions between circRNAs and other non-coding RNAs (ncRNAs). Our analysis revealed that the expression level of CircHIPK3 was significantly elevated in T2DM patients compared to healthy participants (P < 0.001) and pre-diabetes subjects (P = 0.018). In addition, ROC analysis suggested that at the cutoff value of 0.24 and the sensitivity and specificity of 50% and 88.4%, respectively, CircHIPK3 could distinguish between T2DM patients and control subjects. Furthermore, it was observed that the expression level of CDR1as is higher in pre-diabetic individuals than healthy individuals (P = 0.004). Finally, Spearman correlation analysis showed that there was a significant correlation between CircHIPK3 and CDR1as expression levels and clinical and anthropometrical parameters such as BMI, systolic and diastolic blood pressure, HbA1c and fasting blood glucose (P < 0.005). CONCLUSIONS: The data of this study provided evidence that the expression levels of CircHIPK3, CDR1as increased in T2DM and pre-diabetes subjects, respectively.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Estado Prediabético/diagnóstico , ARN Circular/sangre , ARN Largo no Codificante/sangre , Adulto , Anciano , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/genética , Curva ROC , Sensibilidad y Especificidad , Regulación hacia Arriba
3.
Biotechnol Appl Biochem ; 69(3): 939-950, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33840140

RESUMEN

Glucose oxidase is a subset of oxidoreductase enzymes that catalyzes the transfer of electrons from an oxidant to a reductant. Glucose oxidases use oxygen as an external electron acceptor that releases hydrogen peroxide (H2 O2 ). Glucose oxidase has many applications in commercial processes, including improving the color and taste, increasing the persistence of food materials, removing the glucose from the dried egg, and eliminating the oxygen from different juices and beverages. Moreover, glucose oxidase, along with catalase, is used in glucose testing kits (especially in biosensors) to detect and measure the presence of glucose in industrial and biological solutions (e.g., blood and urine specimens). Hence, glucose oxidase is a valuable enzyme in the industry and medical diagnostics. Therefore, evaluating the structure and function of glucose oxidase is crucial for modifying as well as improving its catalytic properties. Finding different sources of glucose oxidase is an effective way to find the type of enzyme with the desired catalysis. Besides, the recombinant production of glucose oxidase is the best approach to produce sufficient amounts of glucose oxidase for various uses. Accordingly, the study of various aspects of glucose oxidase in biotechnology and bioprocessing is crucial.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , Catálisis , Glucosa , Glucosa Oxidasa/química , Oxígeno
4.
Biotechnol Appl Biochem ; 68(6): 1243-1249, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33010062

RESUMEN

Pathogenesis of the beginning and progression of nonalcoholic fatty liver disease (NAFLD) has not been clarified exactly. The osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) axis seems to play an imperative function in the onset and progression of this disease. The goal of the present study was to investigate the peripheral blood mononuclear cell (PBMC) expression and plasma levels of RANKL and OPG cytokines in NAFLD patients and compare them with healthy group. Plasma levels of OPG and RANKL were determined with ELISA kits in 57 men with NAFLD and 25 healthy men as controls. Biochemical and anthropometric parameters tests were also evaluated in the study groups. RANKL and OPG mRNA contents were evaluated by quantitative RT-PCR. OPG contents were markedly decreased in NAFLD patients as compared with healthy patients [1.43 (1.05-5.45)] versus [2.94 (1.76-4.73)] ng/mL; P = 0.007). The levels of RANKL were significantly reduced in NAFLD patients [74.00 (56.26-203.52) ng/mL] than in healthy patients [119.37 (83.71-150.13) ng/mL]; (P = 0.03). Also, OPG and RANKL gene expression were significantly decreased in NAFLD patients in comparison with the control group (P < 0.05). Moreover, receiver operating characteristic curve indicated that OPG may have a good capability to discriminate between NAFLD patients and normal individuals. A positive correlation was observed between OPG and RANKL in plasma sample (r = 0.495) (P = 0.000). Decreased plasma levels and gene expression of RANKL and OPG cytokines in NAFLD patients indicate that there is a relationship between these cytokines and the pathology of NAFLD disease. Confirmation of this association as well as the mechanism and role of these cytokines in NAFLD require further studies.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/sangre , Osteoprotegerina/sangre , ARN Mensajero/sangre , Receptor Activador del Factor Nuclear kappa-B/sangre , Adulto , Estudios de Casos y Controles , Humanos , Ligandos , Masculino , Persona de Mediana Edad
5.
Mol Biol Rep ; 47(7): 5001-5012, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32533401

RESUMEN

Cyclophosphamide (CPA) is used in the management of autoimmune conditions and malignant illnesses. However, its therapeutic use is limited because of its severe side effects, especially hepatotoxicity attributed to oxidative stress. Nasturtium officinale R. Br (watercress or WC) has pharmacological properties, such as anti-inflammation, and antioxidant activities. Therefore, the present study was design to assess effects of WC or its active ingredient, quercetin (QE), against CPA-induced hepatotoxicity. For this study, 49 male Wistar rats (200-250 g) were randomly selected and categorized into seven equal groups. The animals were pre- and post-treated with both hydroalcoholic extract of WC (500 mg/kg) and quercetin (75 mg/kg) for 10 consecutive days, and intraperitoneal administration of CPA (200 mg/kg) was performed on only day 10, one hour before the last dose of WC or quercetin. On day 11, all the animals were sacrificed, and their blood and liver were gathered for evaluation of the liver enzyme, hepatic oxidative stress markers, antioxidant enzymes activity, and hematoxylin and eosin staining. CPA significantly increased malondialdehyde (MDA), protein carbonyl (PCO) and nitric oxide (NO) levels and liver biomarkers. Otherwise, hepatic catalase (CAT), reduced glutathione (GSH), total thiol content (tSH), and ferric reducing antioxidant power (FRAP) were considerably lower than the control group. Results showed that WC has the ability to reduce the changes (MDA, PCO, FRAP, CAT, ALT and AST) and QE (MDA, PCO, AST) induced by CPA (p < 0.05). Histopathological finding confirmed the indicated results. These findings propose that WC and QE have protective effect against the CPA-induced hepatotoxicity by decreasing oxidative stress.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Nasturtium/química , Extractos Vegetales/uso terapéutico , Quercetina/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ciclofosfamida/toxicidad , Inmunosupresores/toxicidad , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Estrés Oxidativo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Quercetina/administración & dosificación , Quercetina/farmacología , Ratas , Ratas Wistar
6.
Toxicol Appl Pharmacol ; 346: 9-18, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29574210

RESUMEN

Side effects of methotrexate (MTX) especially hepatotoxicity limits clinical applications of this anticancer agent. Carboxypeptidase G2 (CPG2) is administrated for the treatment of elevated plasma concentrations of MTX. In this study, we have investigated the intracellular delivery of CPG2 fused to the transactivator transduction domain (TAT) and its protective effects against MTX-induced cell death of HepG2 cells. We have observed that both native and denatured forms of the enzyme transduced into the HepG2 cells efficiently in a concentration and time-dependent manner. The denatured protein transduced with higher efficiency than the native form and was functional inside the cells. MTX exposure significantly decreased HepG2 cell viability in a dose- and time-dependent manner. The cell viability after 24 and 48 h of incubation with 100 µM MTX was reduced to 44.37% and 17.69%, respectively. In cells pretreated with native and denatured TAT-CPG2 protein the cell viability was 98.63% and 86.31% after 24 and 48 h, respectively. Treatment with MTX increased the number of apoptotic HepG2 cells to 90.23% after 48 h. However, the apoptosis percentage in cells pretreated with native and denatured TAT-CPG2 was 21.49% and 22.28%, respectively. Our results showed that TAT-CPG2 significantly prevents MTX-induced oxidative stress by decreasing the formation of ROS and increasing the content of glutathione (GSH) and catalase activity. Our finding indicates that both native and denatured TAT-CPG2 strongly protect HepG2 cells against MTX-induced oxidative stress and apoptosis. Hence, intracellular delivery of CPG2 might provide a new therapeutic strategy for protecting against MTX mediated cytotoxicity.


Asunto(s)
Muerte Celular/efectos de los fármacos , Metotrexato/efectos adversos , Sustancias Protectoras/farmacología , Transactivadores/farmacología , gamma-Glutamil Hidrolasa/farmacología , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Línea Celular Tumoral , Glutatión/metabolismo , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
Cancer Chemother Pharmacol ; 94(2): 237-250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38678150

RESUMEN

PURPOSE: The current candidate gene association study aims to investigate tag SNPs from the TACR1 gene as pharmacogenetic predictors of response to the antiemetic guidelines-recommended, NK-1 receptor antagonist-based, triple antiemetic regimens. METHODS: A set of eighteen tag SNPs of TACR1 were genotyped in breast cancer patients receiving anthracycline and cyclophosphamide (with/without docetaxel) applying real-time PCR-HRMA. Data analysis for 121 ultimately enrolled patients was initiated by defining haplotype blocks using PHASE v.2.1. The association of each tag SNP and haplotype alleles with failure to achieve the defined antiemetic regimen efficacy endpoints was tested using PLINK (v.1.9 and v.1.07, respectively) based on the logistic regression, adjusting for the previously known chemotherapy-induced nausea and vomiting (CINV) prognostic factors. All reported p-values were corrected using the permutation test (n = 100,000). RESULTS: Four variants of rs881, rs17010730, rs727156, and rs3755462, as well as haplotypes containing the mentioned variants, were significantly associated with failure to achieve at least one of the defined efficacy endpoints. Variant annotation via in-silico studies revealed that the non-seed sequence variant, rs881, is located in the miRNA (hsa-miR-613) binding site. The other three variants or a variant in complete linkage disequilibrium with them overlap a region of high H3K9ac-promoter-like signature or regions of high enhancer-like signature in the brain or gastrointestinal tissue. CONCLUSION: Playing an essential role in regulating TACR1 expression, gene polymorphisms of TACR1 serve as the potential pharmacogenetic predictors of response to the NK-1 receptor antagonist-based, triple antiemetic regimens. If clinically approved, modifying the NK-1 receptor antagonist dose leads to better management of CINV in risk-allele carriers.


Asunto(s)
Antieméticos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Ciclofosfamida , Náusea , Polimorfismo de Nucleótido Simple , Receptores de Neuroquinina-1 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Persona de Mediana Edad , Antieméticos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Receptores de Neuroquinina-1/genética , Náusea/inducido químicamente , Náusea/genética , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Vómitos/inducido químicamente , Vómitos/genética , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Adulto , Estudios de Asociación Genética , Haplotipos , Anciano , Docetaxel/uso terapéutico , Docetaxel/efectos adversos , Farmacogenética , Antraciclinas/efectos adversos , Antraciclinas/uso terapéutico , Genotipo
8.
Biotechnol Prog ; 40(3): e3443, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38462773

RESUMEN

In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118-170 nm, with the zeta potential of 6.2-9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.


Asunto(s)
Dextrinas , Interleucina-12 , Plásmidos , Polietileneimina , Humanos , Supervivencia Celular/efectos de los fármacos , Dextrinas/química , Técnicas de Transferencia de Gen , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-12/química , Peso Molecular , Tamaño de la Partícula , Plásmidos/genética , Plásmidos/química , Polietileneimina/química , Transfección/métodos
9.
Sci Rep ; 14(1): 20564, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232139

RESUMEN

High molecular weight polyethylenimine (HMW PEI; branched 25 kDa PEI) has been widely investigated for gene delivery due to its high transfection efficiency. However, the toxicity and lack of targeting to specific cells have limited its clinical application. In the present investigation, L-3, 4-dihydroxyphenylalanine (L-DOPA) was conjugated on HMW PEI in order to target L-type amino acid transporter 1 (LAT-1) and modulate positive charge density on the surface of polymer/plasmid complexes (polyplexes). The results of biophysical characterization revealed that the PEI conjugates are able to form nanoparticles ≤ 180 nm with the zeta potential ranging from + 9.5-12.4 mV. These polyplexes could condense plasmid DNA and protect it against nuclease digestion at the carrier to plasmid ratios higher than 4. L-DOPA conjugated PEI derivatives were complexed with a plasmid encoding human interleukin-12 (hIL-12). Targeted polyplexes showed up to 2.5 fold higher transfection efficiency in 4T1 murine mammary cancer cell line, which expresses LAT-1, than 25 kDa PEI polyplexes prepared in the same manner. The cytotoxicity of these polyplexes was also substantially lower than the unmodified parent HMW PEI. These results support the use of L-3, 4-dihydroxyphenylalanine derivatives of PEI in any attempt to develop a LAT-1 targeted gene carrier.


Asunto(s)
Peso Molecular , Plásmidos , Polietileneimina , Polietileneimina/química , Plásmidos/genética , Plásmidos/química , Animales , Ratones , Línea Celular Tumoral , Humanos , Dihidroxifenilalanina/química , Transfección/métodos , Técnicas de Transferencia de Gen , Interleucina-12/metabolismo , Interleucina-12/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Nanopartículas/química , ADN/química
10.
Biotechnol Prog ; 40(5): e3473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757348

RESUMEN

Successful gene therapy relies on carriers to transfer genetic materials with high efficiency and low toxicity in a targeted manner. To enhance targeted cell binding and uptake, we developed and synthesized a new gene delivery vector based on graphene oxide (GO) modified by branched polyethyleneimine (BPEI) and folic acid (FA). The GO-PEI-FA nanocarriers exhibit lower toxicity compared to unmodified PEI, as well as having the potential to efficiently condense and protect pDNA. Interestingly, increasing the polymer content in the polyplex formulation improved plasmid transfer ability. Substituting graphene oxide for PEI at an N/P ratio of 10 in the HepG2 and THP1 cell lines improved hIL-12 expression by up to approximately eightfold compared to simple PEI, which is twice as high as GO-PEI-FA in Hek293 at the same N/P ratio. Therefore, the GO-PEI-FA described in this study may serve as a targeting nanocarrier for the delivery of the hIL-12 plasmid into cells overexpressing folic acid receptors, such as those found in hepatocellular carcinoma.


Asunto(s)
Ácido Fólico , Grafito , Interleucina-12 , Plásmidos , Humanos , Grafito/química , Ácido Fólico/química , Plásmidos/genética , Plásmidos/química , Células Hep G2 , Interleucina-12/genética , Interleucina-12/metabolismo , Polietileneimina/química , Técnicas de Transferencia de Gen , Células HEK293 , Portadores de Fármacos/química , Nanopartículas/química
11.
Eur J Pharmacol ; 982: 176899, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153651

RESUMEN

Colorectal cancer (CRC) ranks among the leading causes of cancer-related deaths worldwide. Enhancing CRC diagnosis and prognosis requires the development of improved biomarkers and therapeutic targets. Emerging evidence suggests that the unfolded protein response (UPR) plays a pivotal role in CRC progression, presenting new opportunities for diagnosis, treatment, and prevention. This study hypothesizes that genetic variants in endoplasmic reticulum (ER) stress response genes influence CRC susceptibility. We examined the frequencies of SNPs in PERK (rs13045) and GRP78/BiP (rs430397) within a South Iranian cohort. We mapped the cellular and molecular features of PERK and GRP78 genes in colorectal cancer, observing their differential expressions in tumor and metastatic tissues. We constructed co-expression and protein-protein interaction networks and performed gene set enrichment analysis, highlighting autophagy as a significant pathway through KEGG. Furthermore, the study included 64 CRC patients and 60 control subjects. DNA extraction and genotyping were conducted using high-resolution melting (HRM) analysis. Significant differences in PERK and GRP78 expressions were observed between CRC tissues and controls. Variations in PERK and GRP78 genotypes were significantly correlated with CRC risk. Utilizing a Multi-Target Directed Ligands approach, a dual PERK/GRP78 inhibitor was designed and subjected to molecular modeling studies. Docking experiments indicated high-affinity binding between the proposed inhibitor and both genes, PERK and GRP78, suggesting a novel therapy for CRC. These findings highlight the importance of understanding genetic backgrounds in different populations to assess CRC risk. Polymorphisms in UPR signaling pathway elements may serve as potential markers for predicting CRC susceptibility, paving the way for personalized therapeutic strategies.


Asunto(s)
Neoplasias Colorrectales , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Polimorfismo de Nucleótido Simple , eIF-2 Quinasa , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Masculino , Femenino , Proteínas de Choque Térmico/genética , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Molecular Dirigida , Anciano , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mapas de Interacción de Proteínas/genética
12.
Polymers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683849

RESUMEN

Cationic polysaccharides are capable of forming polyplexes with nucleic acids and are considered promising polymeric gene carriers. The objective of this study was to evaluate the transfection efficiency and cytotoxicity of N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan salt (HTCS), a quaternary ammonium derivative of chitosan (CS), which benefits from non-ionizable positive charges. In this work, HTCS with a full quaternization of amino groups and a molar mass of 130,000 g·mol-1 was synthesized to use for delivery of a plasmid encoding the interleukin-12 (IL-12) gene. Thus, a polyplex based on HTCS and the IL-12 plasmid was prepared and then was characterized in terms of particle size, zeta potential, plasmid condensation ability, and protection of the plasmid against enzymatic degradation. We showed that HTCS was able to condense the IL-12 plasmid by the formation of polyplexes in the range of 74.5 ± 0.75 nm. The level of hIL-12 production following the transfection of the cells with HTCS polyplexes at a C/P ratio of 8:1 was around 4.8- and 2.2-fold higher than with CS and polyethylenimine polyplexes, respectively. These findings highlight the role of HTCS in the formation of polyplexes for the efficient delivery of plasmid DNA.

13.
Avicenna J Med Biotechnol ; 14(2): 132-136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633983

RESUMEN

Background: The purpose of the present study was to investigate the antimicrobial effects of berberine and thioridazine, as well as their effect on the gene expression of the AdeABC efflux pump system in Multidrug-Resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates. Methods: This study was carried out in five MDR clinical isolates of A. baumannii and a sample of standard strain (A. baumannii PTCC1797). The effect of Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of berberine, thioridazine, and ciprofloxacin alone and their combination on A. baumannii was evaluated by broth microdilution method. Also, their effect on the expression of adeB efflux pump gene was evaluated using real time PCR method. Results: The MIC of thioridazine, berberine, ciprofloxacin+thioridazine, ciprofloxacin+ berberine, thioridazine+berberine, and ciprofloxacin+thioridazine+berberine on MDR A. baumannii isolates was 64, 256, 128, 256, 128, and 128 µg/ml, respectively. The results showed that treatment of strains with thioridazine alone and in combination with berberine and ciprofloxacin significantly (p<0.05) decreased the expression of adeB efflux pump gene. Conclusion: Due to the inhibitory effects of thioridazine on bacterial isolates and adeB efflux pump gene, this compound can be used as a potential antimicrobial agent against MDR A. baumannii.

14.
Heliyon ; 8(12): e12344, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590477

RESUMEN

Introduction: Cholestasis is a disorder that the bile ducts were narrowed and bile acids are not released simply. Bile acids-induced liver damage is exacerbated by inflammation and oxidative stress. The goal of the current study was to investigate the protective impacts of fluvoxamine (Flu) on oxidant-antioxidant balance and inflammatory cytokines in the bile duct ligated (BDL) rats. Methods: Thirty-two male rats were arbitrarily allocated in 4 groups; sham-control (SC), SC+ 150 mg/kg Flu (SCF), bile duct ligation (BDL), and BDL+ 150 mg/kg Flu (BDLF). The rats received distilled water and Flu orally for one week. Biochemical analysis, hematoxylin and eosin staining, as well as oxidant/antioxidant status were evaluated. Also, the mRNA expression of TGF-ß1, IL-1, TNF-α, and α-SMA were determined. Results: The findings indicated serum values of ALT, total bilirubin, and ALP slightly declined in the BDL + Flu group in contrast to BDL rats. The plasma protein carbonyl and inflammatory markers were markedly increased in the BDL group in contrast with SC group (P ≤ 0.05). Treatment with Flu in BDL rats markedly reduced the values of hepatic nitric oxide metabolite and malondialdehyde, plasma protein carbonyl, as well as TNF-α mRNA level (P ≤ 0.05). Histological parameters were improved in the BDL + Flu group in comparison to BDL merely rats. Conclusion: It seems that Flu declined oxidative stress probably by inhibiting lipid peroxidation, protein oxidation, and nitric oxide formation. Also, it reduced inflammation by decreasing TNF-α mRNA expression.

15.
Lab Anim Res ; 38(1): 40, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514128

RESUMEN

Anesthesia and analgesia are major components of many interventional studies on laboratory animals. However, various studies have shown improper reporting or use of anesthetics/analgesics in research proposals and published articles. In many cases, it seems "anesthesia" and "analgesia" are used interchangeably, while they are referring to two different concepts. Not only this is an unethical practice, but also it may be one of the reasons for the proven suboptimal quality of many animal researches. This is a widespread problem among investigations on various species of animals. However, it could be imagined that it may be more prevalent for the most common species of laboratory animals, such as the laboratory mice. In this review, proper anesthetic/analgesic methods for routine procedures on laboratory mice are discussed. We considered the available literature and critically reviewed their anesthetic/analgesic methods. Detailed dosing and pharmacological information for the relevant drugs are provided and some of the drugs' side effects are discussed. This paper provides the necessary data for an informed choice of anesthetic/analgesic methods in some routine procedures on laboratory mice.

16.
Oxid Med Cell Longev ; 2021: 8141563, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707781

RESUMEN

Herbal medicines harbor essential therapeutic agents for the treatment of cholestasis. In this study, we have assessed the anticholestatic potential of Stachys pilifera Benth's (SPB's) hydroalcoholic extract encapsulated into liposomes using bile duct ligation- (BDL-) induced hepatic cholestasis in rats. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), malondialdehyde (MDA), total thiol (T-SH) content, protein carbonyl (PCO), total bilirubin (TBIL), albumin (ALB), and nitric oxide (NO) metabolite levels were measured in either liver tissue or plasma to assess liver damage. Moreover, expression of proinflammatory cytokines (IL-1ß and TNF-α) and liver fibrosis markers (TGF-ß and SM-α) which are driving forces of many liver disorders was also determined. The activity of AST, ALT, and ALP was significantly enhanced in the BDL group in comparison to the control group; however, treatment with liposomal (SPB) hydroalcoholic extract significantly reduced AST and ALT's activity. Increases in MDA, TBIL, and NO levels and T-SH content due to BDL were restored to control levels by liposomal (SPB) hydroalcoholic extract treatment. Similarly, hepatic and plasma oxidative marker MDA levels, significantly enhanced by BDL, were significantly decreased by liposomal (SPB) hydroalcoholic extract treatment. Moreover, histopathological findings further demonstrated a significant decrease in hepatic damage in the liposomal (SPB) hydroalcoholic extract-treated BDL group. In addition, liposomal (SPB) hydroalcoholic extract treatment decreased the liver expression of inflammatory cytokines (IL-1ß, TNF-α) and liver fibrosis markers (TGF-ß and SM-α). Since liposomal (SPB) hydroalcoholic extract treatment alleviated the BDL-induced injury of the liver and improved the hepatic structure and function more efficiently in comparison to free SPB hydroalcoholic extract, probable liposomal (SPB) hydroalcoholic extract exhibits required potential therapeutic value in protecting the liver against BDL-caused oxidative injury.


Asunto(s)
Antioxidantes/farmacología , Colestasis Intrahepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Stachys , Actinas/genética , Actinas/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antifibróticos/aislamiento & purificación , Antifibróticos/farmacología , Antioxidantes/aislamiento & purificación , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/patología , Conducto Colédoco/cirugía , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Ligadura , Liposomas , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Stachys/química , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 394(6): 1191-1203, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33527194

RESUMEN

Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Colestasis/complicaciones , Enfermedades Renales/etiología , Hepatopatías/etiología , Animales , Apoptosis/fisiología , Factor Inductor de la Apoptosis/genética , Conductos Biliares/patología , Colestasis/genética , Fragmentación del ADN , Modelos Animales de Enfermedad , Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Hepatopatías/genética , Hepatopatías/fisiopatología , Masculino , Mitocondrias/patología , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Toxicol Lett ; 349: 12-29, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089816

RESUMEN

The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- ß, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.


Asunto(s)
Antiinflamatorios/farmacología , Colestasis/tratamiento farmacológico , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Sulfasalazina/farmacología , Animales , Colestasis/metabolismo , Colestasis/patología , Conducto Colédoco/cirugía , Modelos Animales de Enfermedad , Regulación hacia Abajo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ligadura , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
19.
Toxicol Res (Camb) ; 10(4): 911-927, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34484683

RESUMEN

Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.

20.
Clin Pharmacol ; 12: 59-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32607004

RESUMEN

AIM: Opium addiction is a serious public health concern in the Middle East countries causing various illnesses. Opium use is associated with an increased risk of several cancers; however, the underlying mechanisms are not yet fully elucidated. Altered levels of adiponectin and its related main receptors, Adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2) have been associated with several malignancies. Opium users are at risk of various cancers. All together let us to the hypothesis that probable overexpression of AdipoRs in opium users might be linked to the occurrence of cancer in this population. METHODS: One hundred opium users along with 100 healthy non-opium users were enrolled in the study. Opium users were followed up for 5 years (2014-2019) to evaluate the occurrence of malignancies. AdipoR1 and AdipoR2 expressions were measured using a flow cytometry method. RESULTS: Expression of AdipoR1 and AdipoR2 was significantly higher in opium users compared with the healthy control group (P=0.0001 and 0.0001, respectively). Eight opium users developed cancer during the follow-up period. Subjects abusing opium developed cancer by 8.6 folds comparing to non-opium users (P=0.034; OR=8.6; 95% CI (1.06-70.1)). Expression of these two receptors was significantly higher in opium users developing cancer compared with cancer-free opium (P=0.001). CONCLUSION: Considering the significant overexpression of AdipoR1 and AdipoR2 in opium users and in opium users who developed malignancies and the association between upregulation of these receptors in most cancers affecting opium users and assessment of AdipoRs may serve as an early detection tool of cancer in this population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA