Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Parasitol Res ; 123(3): 157, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459281

RESUMEN

Musca domestica Linnaeus is a devastating insect pest of medical and veterinary importance with reports of resistance development to commonly used insecticides worldwide. Rearing substrates usually play a crucial role in determining susceptibility to insecticides and control of insect pests. The aim of the present study was to investigate the effect of five rearing substrates of M. domestica on its susceptibility to different insecticides and activities of metabolic enzymes. After 30 generations of rearing, susceptibility of M. domestica to tested insecticides, viz., malathion, pirimiphos-methyl, alpha-cypermethrin, deltamethrin, methomyl, propoxur, spinetoram, and chlorfenapyr had evident differences. Musca domestica reared on hen liver exhibited reduced susceptibility to all insecticides followed by the strain reared on poultry manure. However, M. domestica reared on milk-based diet showed the highest susceptibility to tested insecticides followed by the strain reared on manures of buffalo and horse. In addition, M. domestica reared on different substrates exhibited significant differences (p < 0.01) in the activities of glutathione S-transferase (GST), cytochrome P450-dependent monooxygenase, and carboxylesterase (CarE). Overall, hen liver and poultry manure strains exhibited higher activities of metabolic enzymes than those of the milk-based diet, buffalo, and horse manure strains. In conclusion, the data of the present study exhibited a significant effect of rearing substrates on the susceptibility to insecticides and activities of metabolic enzymes in M. domestica. These results could be helpful for the sustainable management of M. domestica on different hosts by selecting appropriate insecticides.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Femenino , Caballos , Insecticidas/farmacología , Estiércol , Búfalos , Pollos , Resistencia a los Insecticidas
2.
Ecotoxicology ; 33(2): 226-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424316

RESUMEN

The use of insecticides in agricultural settings often exerts negative effects on nontarget species. Methomyl, a broad-spectrum carbamate insecticide, is recommended to manage a number of insect pests of the cotton crop. Recently, Musca domestica, which is a nontarget insect species in cotton fields, has shown resistance to methomyl in Pakistan. The present study tried to assess resistance-risk assessment, rapidity of resistance development to methomyl, cross-resistance potential to other insecticides, resistance heritability and to forecast the projected rate of resistance development under field conditions. For this purpose, a field strain of M. domestica with 186 fold resistance to methomyl was re-selected in the laboratory for eight consecutive generations. Consequently, LD50 values increased rapidly (126.64 ng/fly to 3112.79 ng/fly) compared to those before selection experiments. Similarly, RR values increased from 186 to 3113 fold as a result of the selection process. However, resistance to methomyl did not remain stable when the selected strain (Meth-SEL) reared for the next five generations in a pesticide free environment. The Meth-SEL strain also developed cross-resistance to permethrin. The realized heritability (h2) value for the Meth-SEL strain was 0.39 with 27% average mortality of M. domestica. Assuming the standard deviation (σp) value 0.27 and the h2 value 0.39 for eight generations of continuous exposure to methomyl, then five, seven, eight, ten and twelve generations at 90, 80, 70, 60 and 50% selection intensity, respectively, would be required for a tenfold increase in the LD50 value of methomyl. In conclusion, the Meth-SEL strain of M. domestica exhibited a high risk of resistance development to methomyl under continuous selection pressure. Resistance increased rapidly during selection experiments that reflect the probability of resistance development under field conditions if M. domestica receive exposures to methomyl during its applications for the management of target pest species.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Moscas Domésticas/genética , Insecticidas/toxicidad , Metomil , Permetrina , Medición de Riesgo , Resistencia a los Insecticidas/genética
3.
Parasitol Res ; 120(2): 435-441, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415395

RESUMEN

Musca domestica is one of the major cosmopolitan pests in livestock facilities because it can be both a nuisance and a vector of pathogens to animals. Currently, treatment of animal manure with insect growth regulator (IGR) insecticides is among major practices to control M. domestica throughout the year over wide-ranging environmental temperatures. Fluctuation in daily or seasonal temperature is one of the most established factors impacting toxicity of insecticides against insect pests. In this study, the effect of posttreatment temperature (range, 20-36 °C) on the toxicity of eight IGRs: five chitin synthesis inhibitors (cyromazine, diflubenzuron, lufenuron, novaluron, triflumuron), two juvenile hormone analogs (methoprene, pyriproxyfen), and one ecdysone agonist (methoxyfenozide), was investigated against M. domestica. The toxicity of lufenuron and novaluron increased by 1.78 times over the range of 20-28 °C, and 2.25 and 1.83 times, respectively, over the range of 28-36 °C, with an overall increase by 4.00 and 3.26 times, respectively (i.e., positive temperature coefficient). In contrast, the toxicity of diflubenzuron, pyriproxyfen, and triflumuron decreased by 1.43, 1.89, and 2.10 times, respectively, over the range of 20-28 °C, and 1.70, 2.00, and 1.95 times, respectively, over the range of 28-36 °C, with an overall decrease by 2.43, 3.78, and 4.10 times, respectively. The toxicity of cyromazine, methoprene, and methoxyfenozide did not change significantly. Overall, these data will help stakeholders to choose appropriate insecticides for M. domestica control depending on the prevailing environmental temperature and to avoid misuse of insecticides that ultimately lead to environmental safety.


Asunto(s)
Moscas Domésticas/crecimiento & desarrollo , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Animales , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Temperatura
4.
Ecotoxicology ; 30(4): 610-621, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33761024

RESUMEN

Musca domestica is a global insect-pest of human beings and animal agriculture. Pyriproxyfen, a juvenile hormone analog, has shown its potential for effective management of M. domestica. However, lethal and sublethal effects of pyriproxyfen on biological traits and demographic growth parameters of M. domestica are still unknown. The present study investigated the effects of lethal and sublethal concentrations on different biological traits of M. domestica for two generations i.e., exposed parents (F0) and their offspring (F1). Concentration-response bioassays revealed that concentrations of pyriproxyfen that caused 50% (LC50), 25% (LC25), 10% (LC10) and 2% (LC2) mortality of M. domestica were estimated as 0.12, 0.06, 0.03 and 0.01 µg/g, respectively. In the F0 generation, exposure of 3rd instar larvae to these concentrations resulted in a reduced pupation rate, lengthened pupal stage duration, light weight pupae and reduction in adult emergence in a concentration-dependent manner. In the case of F1 generation, similar trend was observed for pupation rate, pupal stage duration, and total developmental period (i.e., egg to adult); however, pupal weight was affected at LC10, LC25, LC50 levels, and adult emergence at only LC25 and LC50 levels. The values of demographic growth parameters, analyzed through age-stage, two-sex life table theory, were significantly decreased at all the levels of pyriproxyfen compared with control. This study highlights that pyriproxyfen has the potential to suppress the population of M. domestica through its lethal and sublethal effects and presents an empirical basis from which to consider management decisions for chemical control in the field.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Demografía , Humanos , Insecticidas/toxicidad , Larva , Piridinas/toxicidad
5.
Parasitol Res ; 116(12): 3381-3385, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29075926

RESUMEN

House flies are one of the major public health pests in urban settings. People usually use insecticides containing pyrethroids for the management of house flies; however, there is a lack of information on pyrethroid resistance in house flies from urban areas. In the present study, resistance to four pyrethroids (beta-cyfluthrin, deltamethrin, permethrin, transfluthrin) was assessed in house flies collected from urban areas of Punjab, Pakistan. Significant levels of resistance to all the pyrethroids were found in different strains of house flies. The resistance ratios (RRs) at the median lethal dose (LD50) level were in the range of 5.25- to 11.02-fold for beta-cyfluthrin, 7.22- to 19.31-fold for deltamethrin, 5.36- to 16.04-fold for permethrin, and 9.05- to 35.50-fold for transfluthrin. Pairwise comparison of the log LD50s revealed a highly significant correlation (p < 0.01) between deltamethrin and permethrin, suggesting the possibility of a cross-resistance mechanism. The results revealed the occurrence of pyrethroid resistance in house flies from urban areas of Punjab. Regular resistance monitoring surveys and integrated approaches for the management of house flies are needed to retain the efficacy of these insecticides for a longer period of time.


Asunto(s)
Ciclopropanos/farmacología , Fluorobencenos/farmacología , Moscas Domésticas/efectos de los fármacos , Resistencia a los Insecticidas/fisiología , Insecticidas/farmacología , Nitrilos/farmacología , Permetrina/farmacología , Piretrinas/farmacología , Animales , Pakistán
6.
Parasitol Res ; 115(4): 1385-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711449

RESUMEN

The house fly, Musca domestica, is a serious pest of public health importance with the ability to develop insecticide resistance. The focus of the present study was to evaluate toxicity and resistance of the field collected house flies from Punjab, Pakistan, against insect growth regulator (IGR) insecticides. House flies collected from six different localities exhibited very low levels of resistance to cyromazine, triflumuron, and methoxyfenozide compared with the Lab-susceptible reference strain, with resistance ratios (RRs) ranging between 3.56- to 8.19-fold, 1.45- to 3.68-fold, and 2.20- to 8.60-fold, respectively. However, very low to low levels of resistance were observed for pyriproxyfen and very low to moderate levels for lufenuron with RRs ranged from 4.13- to 11.63-fold to 8.57- to 22.75-fold, respectively. There was a significant correlation between RRs of cyromazine and triflumuron (r = 0.976, p < 0.001), suggesting the possibility for cross-resistance. Susceptibility status of different IGRs in Pakistani strains of house flies is reported here for the first time. The trend observed in decreasing susceptibility towards different IGR insecticides tested will continue unless resistance management practices are followed.


Asunto(s)
Moscas Domésticas/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Animales , Relación Dosis-Respuesta a Droga , Insecticidas/administración & dosificación , Hormonas Juveniles/administración & dosificación , Pakistán
7.
J Med Entomol ; 52(5): 1013-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26336235

RESUMEN

House flies are major insect pests at dairy farms in Pakistan and are mainly controlled with insecticides of different classes, including organophosphates. To develop a better resistance management strategy, a field strain of house flies was selected in the laboratory to study the potential for the development of resistance, possible mechanisms of resistance and cross-resistance to other insecticides. The selection of the field strain with profenofos for five consecutive generations resulted in the LC50 values to increase from 50.49 to 176.03 µg/ml, and the resistance ratio increased from 29.70 to 103.55 as compared with a laboratory-susceptible strain; however, the resistance was decreased significantly when the selected strain was reared for the next five generations without exposure to any insecticide. The profenofos-selected strain (Profen-SEL) showed cross-resistance to chlorpyrifos and deltamethrin but no cross-resistance observed to spinosad. Synergism studies with piperonyl butoxide and S,S,S-tributylphosphorotrithioate indicated that the resistance to profenofos was probably associated with esterase and, possibly, microsomal oxidase activity. Resistance to profenofos in the selected strain suggests that the resistance, owing to instability, could be overcome by switching off profenofos use for few generations in the field or by rotation with different insecticides having different modes of action.


Asunto(s)
Moscas Domésticas/efectos de los fármacos , Moscas Domésticas/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Organotiofosfatos/farmacología , Selección Genética , Animales , Femenino , Pakistán
8.
Ecotoxicology ; 24(6): 1213-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25956986

RESUMEN

Deltamethrin (a pyrethroid insecticide) has widely been used against the house fly, Musca domestica, a pest found in livestock facilities worldwide. Although, cases of both metabolic and physiological resistance to deltamethrin have been reported in different parts of the world, no studies have been reported to characterize this resistance in house flies from Pakistan. In the present study, we investigated a field strain of house flies for potential to develop resistance to deltamethrin. Also, its stability, possible mechanisms and cross-resistance potential to other insecticides. Before the selection experiments, the field strain showed 8.41-, 3.65-, 8.39-, 2.68-, 19.17- and 5.96-fold resistance to deltamethrin, bifenthrin, lambda-cyhalothrin, chlorpyrifos, profenofos and spinosad, respectively, compared with the reference strain (Lab-susceptible). Continuous selection of the field strain (Delta-SEL) with deltamethrin for six generations (G1-G6) in the laboratory increased the resistance ratio to 176.34 after bioassay at G7. The Delta-SEL strain was reared for the next four generations without exposure to deltamethrin and bioassayed at G11 which revealed that the resistance was stable. The Delta-SEL strain at G7 showed cross-resistance to all other insecticides except spinosad, when compared to the bioassays before the selection experiment (G1). Crosses between Delta-SEL and Lab-susceptible strains revealed an autosomal and incomplete dominant mode of resistance to deltamethrin. A direct test using a monogenic inheritance model revealed that the resistance was governed by more than one factor. Moreover, synergism studies with the enzyme inhibitors PBO and DEF reduced the resistance to deltamethrin in the selected strain up to 2.51- and 2.19-fold, respectively, which revealed that the resistance was possibly due to microsomal oxidase and esterase activity. It is concluded that the resistance to deltamethrin was autosomal and incompletely dominant. The high cross-resistance of bifenthrin, lambda-cyhalothrin, chlorpyrifos and profenofos in the Delta-SEL strain suggests that other insecticides would be necessary to counter the resistance. These results are therefore suggestive for implications in the management of insecticide resistance in house flies.


Asunto(s)
Moscas Domésticas/efectos de los fármacos , Moscas Domésticas/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Femenino , Pakistán
9.
Parasitol Res ; 113(4): 1343-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24481906

RESUMEN

Houseflies, Musca domestica (L.), are ubiquitous pests that have the potential to spread a variety of pathogens to humans, poultries, and dairies. Pesticides are commonly used for the management of this pest. Fipronil is a GABA-gated chloride channel-inhibiting insecticide that has been commonly used for the management of different pests including M. domestica throughout the world. Many pests have developed resistance to this insecticide. A field-collected strain of M. domestica was selected with fipronil for continuous 11 generations to assess the cross-resistance, genetics, and realized heritability for designing a resistance management strategy. Laboratory bioassays were performed using the feeding method of mixing insecticide concentrations with 20% sugar solutions and cotton soaks dipped in insecticide solutions were provided to tested adult flies. Bioassay results at G12 showed that the fipronil-selected strain developed a resistance ratio of 140-fold compared to the susceptible strain. Synergism bioassay with piperonyl butoxide (PBO) and S,S,S,-tributyl phosphorotrithioate (DEF) indicated that fipronil resistance was associated with microsomal oxidase and also esterase. Reciprocal crosses between resistant and susceptible strains showed an autosomal and incompletely dominant resistance to fipronil. The LC50 values of F1 and F'1 strains were not significantly different and dominance values were 0.74 and 0.64, respectively. The resistance to fipronil was completely recessive (D(ML) = 0.00) at the highest dose and incompletely dominant at the lowest dose (D(ML) = 0.87). The monogenic resistance based on chi-square goodness of fit test and calculation of the minimum number of segregating genes showed that resistance to fipronil is controlled by multiple genes. The fipronil resistance strain confirmed very low cross-resistance to emamectin benzoate and spinosad while no cross-resistance to chlorpyrifos and acetamiprid when compared to that of the field population. The heritability values were 0.112, 0.075, 0.084, 0.008, and 0.052 for fipronil, emamectin benzoate, spinosad, acetamiprid, and chlorpyrifos, respectively. It was concluded that fipronil resistance in M. domestica was autosomally inherited, incompletely dominant, and polygenic. These findings would be helpful for the better and successful management of M. domestica.


Asunto(s)
Moscas Domésticas/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Pirazoles/farmacología , Animales , Cloropirifos/farmacología , Cruzamientos Genéticos , Combinación de Medicamentos , Femenino , Moscas Domésticas/efectos de los fármacos , Patrón de Herencia , Ivermectina/análogos & derivados , Ivermectina/farmacología , Macrólidos/farmacología , Masculino , Neonicotinoides , Organotiofosfatos/farmacología , Sinergistas de Plaguicidas/farmacología , Butóxido de Piperonilo/farmacología , Piridinas/farmacología , Carácter Cuantitativo Heredable
10.
Ecotoxicology ; 23(5): 791-801, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24609299

RESUMEN

Lambda-cyhalothrin, a pyrethroid insecticide, has been used frequently for the control of house flies, Musca domestica L., worldwide including Pakistan. To assess the resistance risk and design a resistance management strategy, a house fly population was exposed to lambda-cyhalothrin in the laboratory to assess inheritance and heritability, and cross-resistance to other insecticides, including different chemical classes. After 11 generations of selection, the population developed 113.57-fold resistance to lambda-cyhalothrin compared to the susceptible population. There was no cross-resistance to bifenthrin and methomyl, but very low cross-resistance to abamectin and indoxacarb in the lambda-cyhalothrin selected population compared to the field population. Synergism bioassay with piperonyl butoxide and S,S,S-tributylphosphorotrithioate indicated that lambda-cyhalothrin resistance was associated with microsomal oxidases and esterases. The LC50 values of F1 (Lambda-SEL ♀ × Susceptible ♂) and F'1 (Lambda-SEL ♂ × Susceptible ♀) populations were not significantly different and dominance (DLC) values were 0.68 and 0.62. The resistance to lambda-cyhalothrin was completely recessive (DML = 0.00) at highest dose and completely dominant at lowest dose (DML = 0.95). The monogenic model of inheritance showed that lambda-cyhalothrin resistance was controlled by multiple factors. The heritability values were 0.20, 0.04, 0.003, 0.07 and 0.08 for lambda-cyhalothrin, bifenthrin, methomyl, indoxacarb and abamectin resistance, respectively. It was concluded that lambda-cyhalothrin resistance in house flies was autosomally inherited, incompletely dominant and controlled by multiple factors. These findings would be helpful to improve the management of house flies.


Asunto(s)
Dípteros/genética , Insecticidas , Nitrilos , Piretrinas , Animales , Femenino , Patrón de Herencia , Resistencia a los Insecticidas/genética , Masculino , Organotiofosfatos , Butóxido de Piperonilo
11.
Sci Rep ; 14(1): 245, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167477

RESUMEN

Resistance to permethrin has been reported in Pakistani strains of Musca domestica. The present study explored the performance of biological traits and analyzed life tables to determine whether there is any detrimental effect of permethrin resistance on the fitness of permethrin-resistant strains [an isogenic resistant strain (Perm-R) and a field strain (Perm-F)] compared to a susceptible strain (Perm-S). Perm-R and Perm-F exhibited 233.93- and 6.87-fold resistance to permethrin, respectively. Life table analyses revealed that the Perm-R strain had a significantly shorter preadult duration, longer longevity, shorter preoviposition period, higher fecundity, finite rate of increase, intrinsic rate of increase, net reproductive rate and a shorter mean generation time, followed by the Perm-F strain when compared to the Perm-S strain. Data of the performance of biological traits reveled that permethrin resistance strains had a better fit than that of the Perm-S strain. The enhanced fitness of resistant strains of M. domestica may accelerate resistance development to permethrin and other pyrethroids in Pakistan. Some possible measures to manage M. domestica and permethrin resistance in situations of fitness advantage are discussed.


Asunto(s)
Moscas Domésticas , Insecticidas , Piretrinas , Animales , Permetrina/farmacología , Insecticidas/farmacología , Moscas Domésticas/genética , Resistencia a los Insecticidas/genética , Piretrinas/farmacología
12.
PLoS One ; 19(3): e0300922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517921

RESUMEN

Musca domestica L. (Muscidae: Diptera) is a human and livestock pest especially in tropical and sub-tropical areas. Different insecticides have been used to control this pest that pose serious harmful effects on humans and the environment. The current study was planned to investigate the effects of two concentrations (LC25 and LC50) of pyriproxyfen on biological and population parameters of a field strain of M. domestica. The exposed parents (F0) and their progeny (F1) were studied to examine the transgenerational effects. The results indicated that preadult duration was higher in control (13.68 days) compared to LC50 treated individuals (12.44 days). The male and female longevity was relatively lower in the LC25 treated population i.e. 24.62 and 26.62 days, respectively. The adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) values were higher in the LC25 treated individuals than those of control. Moreover, oviposition days and fecundity were reduced in the treated individuals as compared to the control treatment. A gradual decrease in the net reproductive rate (R0) was observed (8.46-14.07 per day) while the value of R0 was significantly higher in control. The results suggested that pyriproxyfen can be effectively utilized and incorporated in the management programs of M. domestica.


Asunto(s)
Moscas Domésticas , Insecticidas , Muscidae , Animales , Masculino , Femenino , Humanos , Piridinas/farmacología , Reproducción , Insecticidas/farmacología
13.
Parasitol Res ; 112(5): 2049-54, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23456023

RESUMEN

The house fly, Musca domestica L., is one of the major pests in dairy operations that has developed resistance to a number of insecticides with different modes of action. Adult house fly populations from six dairies in Punjab, Pakistan were evaluated for resistance to insecticides with novel modes of action (abamectin, emamectin benzoate, fipronil, imidacloprid, indoxacarb, and spinosad). Significant levels of resistance to most of the insecticides tested were observed in the present study. For avermectins at LC50 level, the resistance ratios were in the range of 38.40 to 94.44-fold for abamectin and 13.16 to 36.30-fold for emamectin benzoate. Fipronil LC50 resistance ratios exceeded 10-fold in three house fly populations, while all the populations had >10-fold resistance ratios for imidacloprid. Indoxacarb and spinosad had the lowest resistance ratios that ranged from 3.02 to 7.12-fold for indoxacarb and 2.91 to 9.0-fold for spinosad. As the resistance to fipronil, indoxacarb, and spinosad are emerging, therefore these chemicals should be used cautiously in management programs to retain the efficacy for longer times.


Asunto(s)
Bioensayo , Industria Lechera , Moscas Domésticas/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Combinación de Medicamentos , Imidazoles/farmacología , Insecticidas/química , Insecticidas/clasificación , Ivermectina/análogos & derivados , Ivermectina/farmacología , Macrólidos/farmacología , Neonicotinoides , Nitrocompuestos/farmacología , Oxazinas/farmacología , Pakistán , Pirazoles/farmacología
14.
Ecotoxicology ; 22(3): 522-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23371032

RESUMEN

The house fly, Musca domestica L., is an important hygienic pest of humans and dairy animals with the potential to develop resistance to most chemical classes of insecticides. Six adult house fly strains from dairy farms in Punjab, Pakistan were evaluated for resistance to selected insecticides from organochlorine, organophosphate, carbamate and pyrethroid classes. For a chlorocyclodiene and two organophosphates tested, the resistance ratios (RR) at LC50 were in the range of 5.60-22.02 fold for endosulfan, 7.66-23.24 fold for profenofos and 2.47-7.44 fold for chlorpyrifos. For two pyrethroids and one carbamate, the RR values at LC50 were 30.22-70.02 for cypermethrin, 5.73-18.31 for deltamethrin, and 4.39-15.50 for methomyl. This is the first report of resistance to different classes of insecticides in Pakistani dairy populations of house flies. Regular insecticide resistance monitoring programs on dairy farms are needed to prevent field control failures. Moreover, integrated approaches including the judicious use of insecticides are needed to delay the development of insecticide resistance in house flies.


Asunto(s)
Carbamatos , Moscas Domésticas/efectos de los fármacos , Hidrocarburos Clorados , Resistencia a los Insecticidas , Insecticidas , Piretrinas , Animales , Industria Lechera , Pakistán
15.
Sci Rep ; 13(1): 7074, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127684

RESUMEN

Insecticides are an integral part of most of the cropping systems worldwide; however, these usually exert negative impact on the environment and non-target insects as well. Non-target insects are prone to develop resistance to insecticides due to prolonged and repeated lethal and sublethal exposures. Musca domestica is a common non-target, pollinator and nectar feeder species in cotton ecosystem, besides its status as a public health pest in human habitations. In the present work, resistance to methomyl, one of the major insecticides used for cotton pest management, was assessed in 20 M. domestica strains from the major cotton producing areas of the Punjab and Sindh provinces of Pakistan. The results revealed that toxicity values of methomyl for Punjabi and Sindhi strains ranged from 28.07 to 136.16 µg fly-1 and 29.32 to 136.87 µg fly-1, respectively. Among Punjabi strains, D.G. Khan, Lodhran, Bahawalpur, Toba Tek Singh, Bahawalnagar, Rajanpur and Jhang strains exhibited very high levels of resistance (RR > 100) to methomyl; Bhakkar, Kasur, Vehari, Layyah, Muzaffargarh and R.Y. Khan showed high resistance (RR = 51-100 fold), while the Mianwali strain showed a moderate level of resistance to methomyl (RR = 36.45 fold). In case of Sindhi strains, very high levels of resistance (> 100 fold) were reported for Sukkar and Sanghar strains, high levels of resistance (RR 51-100 fold) for Khairpur, Jamshoro and Ghotki, and moderate resistance to methomyl (38.08 fold) in the Dadu strain. There was a significant synergism of methomyl toxicity in all field strains when methomyl bioassayed along with piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) providing clues of metabolic-based mechanisms of resistance to methomyl. In conclusion, insecticides used in crop farming can cause resistance development in non-target M. domestica. It is necessary to adopt the pest management activities that are safe for the environment and non-target insect species.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Humanos , Insecticidas/farmacología , Metomil , Pakistán , Ecosistema , Resistencia a los Insecticidas
16.
Toxics ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276715

RESUMEN

Cyromazine is a triazine insect growth regulator insecticide that is recommended for control of Musca domestica worldwide. Cyromazine is highly effective in causing mortality of M. domestica; however, some aspects of its lethal and sublethal effects on the biology of M. domestica are still unknown. The present study explored lethal and sublethal effects on several biological traits and population parameters of M. domestica. Concentration-response bioassays of cyromazine against third-instar larvae of M. domestica exhibited sublethal and lethal effects from concentrations of 0.03 (LC10), 0.06 (LC25), and 0.14 (LC50) µg/g of a larval medium. Exposure of M. domestica larvae to these concentrations resulted in reduced fecundity, survival, longevity and oviposition period, and delayed development of immature stages (i.e., egg hatch time and larval and pupal durations) in the upcoming generation of M. domestica. The values of population parameters such as intrinsic rate of increase, finite rate of increase, net reproductive rate, age-specific survival rate and fecundity, and age-stage life expectancy and reproductive value, analyzed using the age-stage and two-sex life table theory, were significantly reduced in a concentration-dependent manner in comparison with the control group. In conclusion, the study highlights the significant effects of cyromazine on the biology of M. domestica that could help suppress its population in cases of severe infestations.

17.
Environ Sci Pollut Res Int ; 30(11): 29921-29928, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36422779

RESUMEN

Indiscriminate use of insecticides in food storage facilities for controlling insect pests has deleterious effects on the environment and non-targeted organisms in the premises. Continuous use of insecticides may result in resistance development in insect pests, which compel the stakeholders to increase the dosage of insecticides to manage resistant insect pests. The increased dosage of insecticides ultimately may result in contamination of stored food stuff that affects human health. The present study was planned to generate data that will be helpful to delay resistance development and to reduce environmental pollution. A field strain of Sitophilus oryzae, one of the most common insect pests of stored foodstuff, was selected separately with pirimiphos-methyl, permethrin, or spinosad for five consecutive generations. The selected strains were studied for resistance risk assessment, time taken to develop resistance to insecticides after continuous exposure in the selection process, preliminary mechanism of resistance, and whether the development of resistance due to the selection with a particular insecticide could develop cross-resistance to other insecticide or not. In comparison to a laboratory susceptible reference strain, the insecticide-selected strains revealed rapid development of resistance against insecticides as a result of selection process: 31.05-fold resistance to pirimiphos-methyl, 156.49-fold resistance to permethrin, and 65.6-fold resistance to spinosad. The selected strains did not show cross-resistance to insecticides to with these strains were not exposed during selection experiments, i.e., strain selected with pirimiphos-methyl did not show cross-resistance to spinosad and permethrin. In the synergism bioassays, the synergists (S,S,S-tributyl phosphorotrithioate and piperonyl butoxide) significantly reduced resistance of the selected strain against insecticides to with these were selected, revealing the probability of metabolic mechanism of resistance. The present study revealed high risks of resistance development to pirimiphos-methyl, spinosad, and permethrin under consistent selection pressure. Lack of cross-resistance among insecticides provides an opportunity to use insecticides in rotation instead of increasing dosages to manage resistant insects that will ultimately pollute the environment.


Asunto(s)
Insecticidas , Animales , Humanos , Insecticidas/farmacología , Permetrina/farmacología , Resistencia a los Insecticidas , Insectos , Medición de Riesgo
18.
Plants (Basel) ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631216

RESUMEN

Due to ongoing human activities, heavy metals are heavily accumulated in the soil. This leads to an increase in the discharge and the quick spread of heavy metal pollution in human settlements and natural habitats, having a disastrous effect on agricultural products. The current experiment was planned to evaluate the effect of lead-tolerant-plant-growth-promoting rhizobacteria (LTPGPR) on growth, yield, antioxidant activities, physiology, and lead uptake in the root, shoot, and seed of Indian mustard (Brassica juncea) in lead-amended soil. Three pre-isolated well-characterized lead-tolerant rhizobacterial strains-S10, S5, and S2-were used to inoculate seeds of Indian mustard grown at three different levels of lead (300 mg kg-1, 600 mg kg-1, 900 mg kg-1) contaminated soil. The experiment was designed following a completely randomized design (CRD) under factorial arrangements. Lead nitrate was used as a source of lead contamination. At harvesting, data regarding growth, physiology, yield per plant, antioxidant activities, malondialdehyde and proline content, and lead uptake in the root, shoot, and seed of Indian mustard were recorded. Results demonstrated that lead contamination at all levels significantly reduced the plant growth, yield, and physiological processes. Plants inoculated with lead-tolerant rhizobacteria showed a significant improvement in plant growth, yield, antioxidant activities, and physiological attributes and cause a valuable reduction in the malondialdehyde contents of Indian mustard in lead-contaminated soil. Moreover, plants inoculated with lead-tolerant rhizobacteria also showed an increment in lead uptake in the vegetative parts and a significant reduction of lead contents in the seed of Indian mustard.

19.
Sci Rep ; 13(1): 13181, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580401

RESUMEN

Chitinase-producing fungi have now engrossed attention as one of the potential agents for the control of insect pests. Entomopathogenic fungi are used in different regions of the world to control economically important insects. However, the role of fungal chitinases are not well studied in their infection mechanism to insects. In this study, Chitinase of entomopathogenic fungi Trichoderma longibrachiatum was evaluated to control Aphis gossypii. For this purpose, fungal chitinase (Chit1) gene from the genomic DNA of T. longibrachiatum were isolated, amplified and characterised. Genomic analysis of the amplified Chit1 showed that this gene has homology to family 18 of glycosyl hydrolyses. Further, Chit1 was expressed in the cotton plant for transient expression through the Geminivirus-mediated gene silencing vector derived from Cotton Leaf Crumple Virus (CLCrV). Transformed cotton plants showed greater chitinase activity than control, and they were resistant against nymphs and adults of A. gossypii. About 38.75% and 21.67% mortality of both nymphs and adults, respectively, were observed by using Chit1 of T. longibrachiatum. It is concluded that T. longibrachiatum showed promising results in controlling aphids by producing fungal chitinase in cotton plants and could be used as an effective method in the future.


Asunto(s)
Áfidos , Quitinasas , Animales , Gossypium/genética , Gossypium/metabolismo , Áfidos/genética , Quitinasas/genética , Quitinasas/metabolismo , Insectos/metabolismo
20.
Parasitol Res ; 111(3): 1165-71, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22576856

RESUMEN

The house fly, Musca domestica L. (Diptera: Muscidae) is one of the major pests of confined and pastured livestock worldwide. Livestock manures play an important role in the development and spread of M. domestica. In the present study, we investigated the impact of different livestock manures on the fitness and relative growth rate of M. domestica and intrinsic rate of natural increase. We tested the hypotheses by studying life history parameters including developmental time from egg to adult's eclosion, fecundity, longevity, and survival on manures of buffalo, cow, nursing calf, dog, horse, poultry, sheep, and goat, which revealed significant differences that might be associated with fitness costs. The maggots reared on poultry manure developed faster compared to any other host manure. The total developmental time was the shortest on poultry manure and the longest on horse manure. The fecundity by females reared on poultry, nursing calf, and dog manures was greater than on any other host manures. Similarly, percent survival of immature stages, pupal weight, eggs viability, adults' eclosion, survival and longevity, intrinsic rate of natural increase, and biotic potential were significantly higher on poultry, nursing calf, and dog manures compared to any other livestock manures tested. However, the sex ratio of adult flies remained the same on all types of manures. The low survival on horse, buffalo, cow, sheep, and goat manures suggest unsuitability of these manures, while the higher pupal weight on poultry, nursing calf, and dog manures suggest that these may provide better food quality to M. domestica compared with any other host manures. Our results point to the role of livestock manures in increasing local M. domestica populations. Such results could help to design cultural management strategies which may include sanitation, moisture management, and manure removal.


Asunto(s)
Moscas Domésticas/fisiología , Ganado , Estiércol/parasitología , Animales , Perros , Femenino , Vivienda para Animales , Larva/fisiología , Longevidad , Masculino , Óvulo , Pupa/fisiología , Reproducción/fisiología , Saneamiento , Razón de Masculinidad , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA