Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769822

RESUMEN

The bacteria expressing New Delhi Metallo-ß-lactamase-1 (NDM-1) can hydrolyze all ß-lactam antibiotics including carbapenems, causing multi-drug resistance. The worldwide emergence and dissemination of gene blaNDM-1 (produces NDM-1) in hospital and community settings, rising problems for public health. Indeed, there is an urgent need for NDM-1 inhibitors to manage antibiotic resistance. Here, we have identified novel non-ß-lactam ring-containing inhibitors of NDM-1 by applying a high-throughput virtual screening of lead-like subset of ZINC database. The screened compounds were followed for the molecular docking, the molecular dynamics simulation, and then enzyme kinetics assessment. The adopted screening procedure funnels out five novel inhibitors of NDM-1 including ZINC10936382, ZINC30479078, ZINC41493045, ZINC7424911, and ZINC84525623. The molecular mechanics-generalized born surface area and molecular dynamics (MD) simulation showed that ZINC84525623 formed the most stable complex with NDM-1. Furthermore, analyses of the binding pose after MD simulation revealed that ZINC84525623 formed two hydrogen bonds (electrostatic and hydrophobic interaction) with key amino acid residues of the NDM-1 active site. The docking binding free energy and docking binding constant for the ZINC84525623 and NDM-1 interaction were estimated to be -11.234 kcal/mol, and 1.74 × 108 M-1 respectively. Steady-state enzyme kinetics in the presence of ZINC84525623 show the decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics. The findings of this study would be helpful in identifying novel inhibitors against other ß-lactamases from a pool of large databases. Furthermore, the identified inhibitor (ZINC84525623) could be developed as efficient drug candidates.


Asunto(s)
Antibacterianos/química , Carbapenémicos/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/efectos de los fármacos , Antibacterianos/farmacología , Dominio Catalítico/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Interfaz Usuario-Computador , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química
2.
Proc Natl Acad Sci U S A ; 112(9): 2817-22, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730848

RESUMEN

Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed "NETosis" is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis.


Asunto(s)
Señalización del Calcio/fisiología , Trampas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Muerte Celular , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , NADPH Oxidasa 2 , Neutrófilos/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Anesthesiology ; 122(4): 864-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25665049

RESUMEN

BACKGROUND: Mechanical ventilation can injure the lung and induce a proinflammatory state; such ventilator-induced lung injury (VILI) is associated with neutrophil influx. Neutrophils release DNA and granular proteins as cytotoxic neutrophil extracellular traps (NETs). The authors hypothesized that NETs were produced in a VILI model and may contribute to injury. METHODS: In a two-hit lipopolysaccharide/VILI mouse model with and without intratracheal deoxyribonuclease (DNase) treatment or blockade of known inducers of NET formation (NETosis), the authors assessed compliance, bronchoalveolar lavage fluid protein, markers of NETs (citrullinated histone-3 and DNA), and markers of inflammation. RESULTS: Although lipopolysaccharide recruited neutrophils to airways, the addition of high tidal mechanical ventilation was required for significant induction of NETs markers (e.g., bronchoalveolar lavage fluid DNA: 0.4 ± 0.07 µg/ml [mean ± SEM], P < 0.05 vs. all others, n = 10 per group). High tidal volume mechanical ventilation increased airway high-mobility group box 1 protein (0.91 ± 0.138 vs. 0.60 ± 0.095) and interleukin-1ß in lipopolysaccharide-treated mice (22.4 ± 0.87 vs. 17.0 ± 0.50 pg/ml, P < 0.001) and tended to increase monocyte chemoattractant protein-1 and interleukin-6. Intratracheal DNase treatment reduced NET markers (bronchoalveolar lavage fluid DNA: 0.23 ± 0.038 vs. 0.88 ± 0.135 µg/ml, P < 0.001; citrullinated histone-3: 443 ± 170 vs. 1,824 ± 403, P < 0.01, n = 8 to 10) and attenuated the loss of static compliance (0.9 ± 0.14 vs. 1.58 ± 0.17 ml/mmHg, P < 0.01, n = 19 to 20) without significantly impacting other measures of injury. Blockade of high-mobility group box 1 (with glycyrrhizin) or interleukin-1ß (with anakinra) did not prevent NETosis or protect against injury. CONCLUSIONS: NETosis was induced in VILI, and DNase treatment eliminated NETs. In contrast to experimental transfusion-related acute lung injury, NETs do not play a major pathogenic role in the current model of VILI.


Asunto(s)
Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Respiración Artificial/efectos adversos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología , Distribución Aleatoria , Volumen de Ventilación Pulmonar/fisiología
4.
Mediators Inflamm ; 2014: 767185, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25114380

RESUMEN

Endoglin is a coreceptor of the TGF-ß superfamily predominantly expressed on the vascular endothelium and selective subsets of immune cells. We previously demonstrated that Endoglin heterozygous (Eng (+/-)) mice subjected to dextran sulfate sodium (DSS) developed persistent gut inflammation and pathological angiogenesis. We now report that colitic Eng (+/-) mice have low colonic levels of active TGF-ß1, which was associated with reduced expression of thrombospondin-1, an angiostatic factor known to activate TGF-ß1. We also demonstrate dysregulated expression of BMPER and follistatin, which are extracellular regulators of the TGF-ß superfamily that modulate angiogenesis and inflammation. Heightened colonic levels of the neutrophil chemoattractant and proangiogenic factor, CXCL1, were also observed in DSS-treated Eng (+/-) mice. Interestingly, despite increased macrophage and neutrophil infiltration, a gut-specific reduction in expression of the key phagocytic respiratory burst enzymes, NADPH oxidase 2 (Nox-2) and myeloperoxidase, was seen in Eng (+/-) mice undergoing persistent inflammation. Taken together, these findings suggest that endoglin is required for TGF-ß superfamily mediated resolution of inflammation and fully functional myeloid cells.


Asunto(s)
Colitis/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Quimiocina CXCL1/metabolismo , Colitis/genética , Modelos Animales de Enfermedad , Endoglina , Heterocigoto , Inflamación/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
5.
Arch Environ Contam Toxicol ; 66(2): 259-69, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24292693

RESUMEN

A polyaniline-based composite cation-exchange material was synthesized by way of sol-gel method and studied to explore its analytical and environmental applications. It was characterized by using instrumental analyses [Fourier transform infrared (spectrometer), X-ray, thermogravimetric analysis/differential thermal analysis, standard electron microscopy, and transmission electron microscopy]. Physicochemical studies, such as ion-exchange capacity, pH titrations, and chemical stability, along with effect of eluent concentration and elution, were also performed to exploit the ion-exchange capabilities. pH titration studies showed that the material presents monofunctional strong cation-exchange behavior. This nanocomposite material is semicrystalline in nature and exhibits improved thermal and chemical stability. The partition coefficient studies of different metal ions in the material were performed in demineralised water and different surfactant media, and it was found to be selective for Pb(II) and Hg(II) ions. To exploit the usefulness of the material as an adsorbent, some important quantitative binary separations of metal ions were performed on polyaniline Zr(IV) molybdophosphate columns. This composite cation exchanger can be applied for the treatment of polluted water to remove heavy metals.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Absorción , Intercambio Iónico , Metales/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
6.
Cell Rep ; 43(8): 114493, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39028622

RESUMEN

Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.

7.
Reprod Biol Endocrinol ; 10: 84, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23006437

RESUMEN

BACKGROUND: In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. METHODS: Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. RESULTS: Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. CONCLUSIONS: Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.


Asunto(s)
Endometriosis/genética , Endometrio/metabolismo , Estudio de Asociación del Genoma Completo , Adulto , Proteínas CLOCK/biosíntesis , Proteínas CLOCK/genética , Análisis por Conglomerados , Endometriosis/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Femenino , Fertilidad , Fase Folicular , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Genes myc , Humanos , Fase Luteínica , Persona de Mediana Edad , Enfermedades del Ovario/genética , Enfermedades del Ovario/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Adulto Joven
9.
Cell Death Discov ; 7(1): 113, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34001856

RESUMEN

Reactive oxygen species (ROS) are essential for neutrophil extracellular trap (NET) formation or NETosis. Nevertheless, how ROS induces NETosis is unknown. Neutrophil activation induces excess ROS production and a meaningless genome-wide transcription to facilitate chromatin decondensation. Here we show that the induction of NADPH oxidase-dependent NETosis leads to extensive DNA damage, and the subsequent translocation of proliferating cell nuclear antigen (PCNA), a key DNA repair protein, stored in the cytoplasm into the nucleus. During the activation of NETosis (e.g., by phorbol myristate acetate, Escherichia coli LPS, Staphylococcus aureus (RN4220), or Pseudomonas aeruginosa), preventing the DNA-repair-complex assembly leading to nick formation that decondenses chromatin causes the suppression of NETosis (e.g., by inhibitors to, or knockdown of, Apurinic endonuclease APE1, poly ADP ribose polymerase PARP, and DNA ligase). The remaining repair steps involving polymerase activity and PCNA interactions with DNA polymerases ß/δ do not suppress agonist-induced NETosis. Therefore, excess ROS produced during neutrophil activation induces NETosis by inducing extensive DNA damage (e.g., oxidising guanine to 8-oxoguanine), and the subsequent DNA repair pathway, leading to chromatin decondensation.

10.
Biomedicines ; 9(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435568

RESUMEN

Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.

11.
Pathogens ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255989

RESUMEN

The COVID-19 pandemic is responsible for an unprecedented disruption to the healthcare systems and economies of countries around the world. Developing novel therapeutics and a vaccine against SARS-CoV-2 requires an understanding of the similarities and differences between the various human coronaviruses with regards to their phylogenic relationships, transmission, and management. Phylogenetic analysis indicates that humans were first infected with SARS-CoV-2 in late 2019 and the virus rapidly spread from the outbreak epicenter in Wuhan, China to various parts of the world. Multiple variants of SARS-CoV-2 have now been identified in particular regions. It is apparent that MERS, SARS-CoV, and SARS-CoV-2 present with several common symptoms including fever, cough, and dyspnea in mild cases, but can also progress to pneumonia and acute respiratory distress syndrome. Understanding the molecular steps leading to SARS-CoV-2 entry into cells and the viral replication cycle can illuminate crucial targets for testing several potential therapeutics. Genomic and structural details of SARS-CoV-2 and previous attempts to generate vaccines against SARS-CoV and MERS have provided vaccine targets to manage future outbreaks more effectively. The coordinated global response against this emerging infectious disease is unique and has helped address the need for urgent therapeutics and vaccines in a remarkably short time.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117457, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31450223

RESUMEN

Drug-binding and interactions with plasma proteins strongly affect their efficiency of delivery, hence considered as a key factor in determining the overall pharmacological action. Alpha-1-acid glycoprotein (AGP), a second most abundant plasma protein in blood circulation, has unique drug binding ability and involved in the transportation of various compounds. Here, we have investigated the mechanism of interaction between AGP and potential Cu/Zn metallo-drugs of benzimidazole derived organic motifs (CuL2 and ZnL2, where L is Schiff base ligand) by applying integrated spectroscopic, biophysical techniques and computational molecular docking analyses. We found that both the metallo-drugs (CuL2 and ZnL2) were bound at the central cavity of AGP interacting with the residues of lobe I, lobe II as well as lobe III. The binding of metallo-drugs to AGP occurs in 1:1 M ratios. Hydrogen bonding, electrostatic and hydrophobic interactions played a significant role in stabilizing the AGP-metallo-drug complexes. Binding affinities of both the metallo-drugs towards AGP at 298 K were of the order of 104-105 M-1, corresponding to Gibbs free energy of stabilization of approximately -5.50 to -6.62 kcal mol-1. Furthermore, the spectroscopic investigation by circular dichroism and synchronous fluorescence analyses suggest conformational changes in AGP upon the binding of metallic compounds.


Asunto(s)
Bencimidazoles/química , Compuestos Organometálicos/química , Orosomucoide/química , Animales , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Sitios de Unión , Bovinos , Dicroismo Circular , Cobre/química , Transferencia Resonante de Energía de Fluorescencia , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Ligandos , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacología , Orosomucoide/efectos de los fármacos , Orosomucoide/metabolismo , Unión Proteica , Conformación Proteica , Bases de Schiff/química , Bases de Schiff/metabolismo , Bases de Schiff/farmacología , Espectrometría de Fluorescencia , Electricidad Estática , Zinc/química
13.
Front Pharmacol ; 11: 899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625093

RESUMEN

Preparations from Arabian Gulf catfish (Arius bilineatus, Val) epidermal gel secretion (PCEGS) effectively heal chronic wounds in diabetic patients. However, specific lipid components of PCEGS that are responsible for various aspects of wound healing are unknown. Here, we report for the first time that, i) a unique preparation containing only proteins and lipids (Fraction B, FB), derived from the PCEGS accelerated the healing of experimental dermal wounds in female rats (transdermal punch biopsy) in vivo. Histological analyses showed that topical treatment of these wounds with FB promoted the migration of fibroblasts, facilitated the production of extracellular matrix (collagen, fibronectin), induced capillary formation and recruitment of immune cells, and accelerated overall wound healing by day 4 (tested at 1, 2, 3, 4, and 10 days; n=15 for vehicle; n=15 for FB treatment), ii) the lipids responsible for different stages of wound healing were separated into a protein-free bioactive lipid fraction, Ft, which contained a few common long-chain fatty acids, a unique furan fatty acid (F6) and a cholesterol metabolite, cholesta-3,5-diene (S5). Ft (the partially purified lipid fraction of PCEGS), and F6 and S5 present in Ft, proved to be bioactive for wound healing in human dermal fibroblasts. Ft increased the production and extracellular deposition of collagen and fibronectin, ex vivo, iii) Ft and its subcomponents, pure F6 and S5, also promoted human dermal fibroblast migration into the scratch wound gaps, ex vivo, iv) Ft, F6, and S5 promoted the recruitment of neutrophils (Green fluorescence protein labeled) to the site of injury in the transected tailfins of transgenic zebrafish, in vivo, v) Ft, but not F6 or S5, promoted the regeneration of tissues at the wound site in the transgenic zebrafish tailfin, in vivo. Therefore, we conclude that lipid fraction Ft from PCEGS contains the components necessary to promote complete wound healing, and F6 and S5 are responsible for promoting fibroblast and neutrophil recruitment to the site of wounds.

14.
Biomolecules ; 9(8)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416173

RESUMEN

Neutrophil extracellular traps (NETs), a unique DNA framework decorated with antimicrobial peptides, have been in the scientific limelight for their role in a variety of pathologies ranging from cystic fibrosis to cancer. The formation of NETs, as well as relevant regulatory mechanisms, physiological factors, and pharmacological agents have not been systematically discussed in the context of their beneficial and pathological aspects. Novel forms of NET formation including vital NET formation continue to be uncovered, however, there remain fundamental questions around established mechanisms such as NADPH-oxidase (Nox)-dependent and Nox-independent NET formation. Whether NET formation takes place in the tissue versus the bloodstream, internal factors (e.g. reactive oxygen species (ROS) production and transcription factor activation), and external factors (e.g. alkaline pH and hypertonic conditions), have all been demonstrated to influence specific NET pathways. Elements of neutrophil biology such as transcription and mitochondria, which were previously of unknown significance, have been identified as critical mediators of NET formation through facilitating chromatin decondensation and generating ROS, respectively. While promising therapeutics inhibiting ROS, transcription, and gasdermin D are being investigated, neutrophil phagocytosis plays a critical role in host defense and any therapies targeting NET formation must avoid impairing the physiological functions of these cells. This review summarizes what is known in the many domains of NET research, highlights the most relevant challenges in the field, and inspires new questions that can bring us closer to a unified model of NET formation.


Asunto(s)
Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Animales , Trampas Extracelulares/efectos de los fármacos , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
15.
Cancers (Basel) ; 11(9)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500300

RESUMEN

Neutrophil extracellular traps (NETs) are cytotoxic DNA-protein complexes that play positive and negative roles in combating infection, inflammation, organ damage, autoimmunity, sepsis and cancer. However, NETosis regulatory effects of most of the clinically used drugs are not clearly established. Several recent studies highlight the relevance of NETs in promoting both cancer cell death and metastasis. Here, we screened the NETosis regulatory ability of 126 compounds belonging to 39 classes of drugs commonly used for treating cancer, blood cell disorders and other diseases. Our studies show that anthracyclines (e.g., epirubicin, daunorubicin, doxorubicin, and idarubicin) consistently suppress both NADPH oxidase-dependent and -independent types of NETosis in human neutrophils, ex vivo. The intercalating property of anthracycline may be enough to alter the transcription initiation and lead NETosis inhibition. Notably, the inhibitory doses of anthracyclines neither suppress the production of reactive oxygen species that are necessary for antimicrobial functions nor induce apoptotic cell death in neutrophils. Therefore, anthracyclines are a major class of drug that suppresses NETosis. The dexrazoxane, a cardioprotective agent, used for limiting the side effects of anthracyclines, neither affect NETosis nor alter the ability of anthracyclines to suppress NETosis. Hence, at correct doses, anthracyclines together with dexrazoxane could be considered as a therapeutic candidate drug for suppressing unwanted NETosis in NET-related diseases.

16.
Biomolecules ; 9(1)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669408

RESUMEN

Neutrophils undergo a unique form of cell death to generate neutrophil extracellular traps (NETs). It is well established that citrullination of histones (e.g., CitH3) facilitates chromatin decondensation during NET formation (NETosis), particularly during calcium-induced NETosis that is independent of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activation. However, the importance of other forms of histone modifications in NETosis has not been established. We considered that acetylation of histones would also facilitate NETosis. To test this hypothesis, we induced NOX-dependent NETosis in human neutrophils with phorbol myristate acetate or lipopolysaccharide (from Escherichia coli 0128), and NOX-independent NETosis with calcium ionophores A23187 or ionomycin (from Streptomycesconglobatus) in the presence or absence of two pan histone deacetylase inhibitors (HDACis), belinostat and panobinostat (within their half maximal inhibitory concentration (IC50) range). The presence of these inhibitors increased histone acetylation (e.g., AcH4) in neutrophils. Histone acetylation was sufficient to cause a significant increase (~20%) in NETosis in resting neutrophils above baseline values. When acetylation was promoted during NOX-dependent or -independent NETosis, the degree of NETosis additively increased (~15⁻30%). Reactive oxygen species (ROS) production is essential for baseline NETosis (mediated either by NOX or mitochondria); however, HDACis did not promote ROS production. The chromatin decondensation step requires promoter melting and transcriptional firing in both types of NETosis; consistent with this point, suppression of transcription prevented the NETosis induced by the acetylation of histones. Collectively, this study establishes that histone acetylation (e.g., AcH4) promotes NETosis at baseline, and when induced by both NOX-dependent or -independent pathway agonists, in human neutrophils. Therefore, we propose that acetylation of histone is a key component of NETosis.


Asunto(s)
Trampas Extracelulares/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Acetilación/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Lipopolisacáridos/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/farmacología
17.
Genes (Basel) ; 10(3)2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813645

RESUMEN

Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.


Asunto(s)
Fibrosis Quística/inmunología , Trampas Extracelulares/metabolismo , Enfermedades Pulmonares/inmunología , Neutrófilos/metabolismo , Adulto , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citotoxinas/metabolismo , Progresión de la Enfermedad , Trampas Extracelulares/química , Humanos , Lactante , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/genética
18.
Cancers (Basel) ; 11(7)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323958

RESUMEN

Identifying novel anti-cancer drugs is important for devising better cancer treatment options. In a series of studies designed to identify novel therapeutic compounds, we recently showed that a C-20 fatty acid (12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid, a furanoic acid or F-6) present in the lipid fraction of the secretions of the Arabian Gulf catfish skin (Arius bilineatus Val.; AGCS) robustly induces neutrophil extracellular trap formation. Here, we demonstrate that a lipid mix (Ft-3) extracted from AGCS and F-6, a component of Ft-3, dose dependently kill two cancer cell lines (leukemic K-562 and breast MDA MB-231). Pure F-6 is approximately 3.5 to 16 times more effective than Ft-3 in killing these cancer cells, respectively. Multiplex assays and network analyses show that F-6 promotes the activation of MAPKs such as Erk, JNK, and p38, and specifically suppresses JNK-mediated c-Jun activation necessary for AP-1-mediated cell survival pathways. In both cell lines, F-6 suppresses PI3K-Akt-mTOR pathway specific proteins, indicating that cell proliferation and Akt-mediated protection of mitochondrial stability are compromised by this treatment. Western blot analyses of cleaved caspase 3 (cCasp3) and poly ADP ribose polymerase (PARP) confirmed that F-6 dose-dependently induced apoptosis in both of these cell lines. In 14-day cell recovery experiments, cells treated with increasing doses of F-6 and Ft-3 fail to recover after subsequent drug washout. In summary, this study demonstrates that C-20 furanoic acid F-6, suppresses cancer cell proliferation and promotes apoptotic cell death in leukemic and breast cancer cells, and prevents cell recovery. Therefore, F-6 is a potential anti-cancer drug candidate.

19.
Front Microbiol ; 10: 8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853939

RESUMEN

Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4-16 µg/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub-MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 µg/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61-79 and 84% for Gram -ve and Gram +ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections.

20.
Cell Death Discov ; 4: 51, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736268

RESUMEN

NETosis is a unique form of neutrophil death that differs from apoptosis and necrosis. However, whether NETosis and apoptosis can occur simultaneously in the same neutrophil is unknown. In this paper, we show that increasing doses of ultraviolet (UV) irradiation increases NETosis, which is confirmed by myeloperoxidase colocalisation to neutrophil extracellular DNA. Increasing UV irradiation increases caspase 3 activation, mitochondrial reactive oxygen species (ROS) generation and p38, but not ERK, phosphorylation. Inhibition of mitochondrial ROS production and p38 activation, but not NADPH oxidase (NOX) activity, suppresses UV-induced NETosis, indicating that UV induces NOX-independent NETosis. Like classical NOX-dependent and -independent NETosis, UV-induced NETosis requires transcriptional firing for chromatin decondensation. Cell death-specific inhibitor studies indicate that UV-mediated NETosis is not apoptosis, necrosis or necroptosis. Collectively, these studies indicate that increasing doses of UV irradiation induce both apoptosis and NETosis simultaneously, but the ultimate outcome is the induction of a novel form of NOX-independent NETosis, or "ApoNETosis".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA