Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 92, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194006

RESUMEN

Nanoparticles (NPs) serve immense roles in various fields of science. They have vastly upgraded conventional methods in the fields of agriculture and food sciences to eliminate growing threats of crop damage and disease, caused by various phytopathogens including bacteria, fungi, viruses, and some insects. Bacterial diseases resulted in mass damage of crops by adopting antibacterial resistance, which has proved to be a major threat leading to food scarcity. Therefore, numerous NPs with antibacterial potentials have been formulated to overcome the problem of antibiotic resistance alongside an increase in crop yield and boosting plant immunity. NPs synthesized through green synthesis techniques have proved to be more effective and environment-friendly than those synthesized via chemical methods. NPs exhibit great roles in plants ranging from enhanced crop yield to disease suppression, to targeted drug and pesticide deliveries inside the plants and acting as biosensors for pathogen detection. NPs serves major roles in disruption of cellular membranes, ROS production, altering of DNA and protein entities and changing energy transductions. This review focuses on the antibacterial effect of NPs on several plant bacterial pathogens, mostly, against Pseudomonas syringe, Ralstonia solanacearum, Xanthomonas axonopodis, Clavibacter michiganensisand Pantoea ananatis both in vivo and ex vivo, thereby minimizing their antibacterial resistance and enhancing the plants acquired immunity. Therefore, NPs present a safer and more reliable bactericidal activity against various disease-causing bacteria in plants.


Asunto(s)
Bacterias , Productos Agrícolas , Agricultura , Antibacterianos/farmacología , Membrana Celular
2.
RSC Adv ; 14(13): 8871-8884, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38495991

RESUMEN

Recently, there has been significant interest in photocatalytic reactions involving graphitic carbon nitride (g-C3N4) due to its sp2-hybridized carbon and nitrogen content and it is an ideal candidate for blending with other materials to enhance performance. Here, we have synthesized and analyzed both doped and undoped g-C3N4 nanoparticles. Specifically, we co-doped sulfur (S) into g-C3N4, integrated it with ZnO particles, and investigated the photocatalytic potential of these nanocomposites to remove Safranin-O dye. The initial step involved the preparation of pure g-C3N4 through calcination of urea. Subsequently, S-g-C3N4 was synthesized by calcining a mixture of urea and thiourea with a 3 : 1 ratio. Finally, the ZnO-S-g-C3N4 composite was synthesized using the liquid exfoliation technique, with distilled water serving as the exfoliating solvent. These samples were characterized by advanced techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), energy dispersive X-ray (EDX) and scanning electron microscopy (SEM), to assess their crystallinity, morphology, optical properties, and phase purity. Subsequently, these nanocomposites were employed in catalytic and photocatalytic processes to remove the Safranin-O dye (SO). The results highlighted the formation of Z-scheme junction responsible for ZnO-S-g-C3N4's significant performance improvement. The comparison of results demonstrated that S-g-C3N4 and ZnO-S-g-C3N4 composites revealed an effective removal of Safranin-O dye in the presence of UV-light as compared to pure g-C3N4, as it was attributed to the phenomenon of improved separation of photogenerated charge carriers as a result of heterojunction formation between S-g-C3N4 and ZnO interfaces. In addition to improving photocatalytic performance, this study presents a facile route for producing ZnO-S-g-C3N4 composite with superior adsorption capabilities and selectivity.

3.
Cent Nerv Syst Agents Med Chem ; 23(1): 48-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825716

RESUMEN

BACKGROUND: Convolvulus pluricaulis is a native plant that is commonly mentioned in Ayurveda as a Rasayana and is primarily recommended for use in mental stimulation and rejuvenation therapy. Convolvulus pluricaulis is used as a brain tonic. The plant is reported to be a prominent memory-improving drug. It is used as a psychostimulant and tranquilizer. It is reported to reduce mental tension. OBJECTIVE: The present study aimed to explore the protective effect of hydroalcoholic extract from the leaves of Convolvulus pluricaulis along with CNS depressant and anti-anxiety activities, in models of mice. METHODS: The extract from leaves of Convolvulus pluricaulis were sequentially isolated with a mixture of water and alcohol solution in the soxhlet apparatus. An acute toxicity study was conducted as per OECD guidelines no. 423, in which 18 Albino male mice were treated with different doses (1, 10, 100, 500, 1000, and 2000 mg/kg) of hydroalcoholic extract of Convolvulus pluricaulis and assessed for toxicity parameters for 14 days. Various psychomotor activities of hydroalcoholic extract from leaves of Convolvulus pluricaulis for 100, 200, and 300 mg/kg doses were performed in mice by using various tests like actophotometer, open field, rota-rod, grip strength tests, elevated plus maze, hole board test, inclined plane, chimney test. RESULTS: The hydroalcoholic extract from leaves of Convolvulus pluricaulis was found to fall under category 4 in the acute toxicity study. Therefore, 100, 200, and 300 mg/kg doses of hydroalcoholic extract of leaves of Convolvulus pluricaulis were selected for the further pharmacological study. The results of psychomotor tests (actophotometer, open field, rota-rod, grip strength, hole board test, inclined plane, chimney test, elevated plus maze, light-dark model) for test doses 100, 200, and 300 in mice showed CNS depressant and anti-anxiety effects. CONCLUSION: Hydroalcoholic extract from leaves of Convolvulus pluricaulis at the 100, 200, and 300 mg/kg doses has shown CNS depressant and anti-anxiety effects in mice models.


Asunto(s)
Ansiolíticos , Depresores del Sistema Nervioso Central , Convolvulus , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Hojas de la Planta
4.
ACR Open Rheumatol ; 2(10): 605-615, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33029956

RESUMEN

OBJECTIVE: Tumor necrosis factor α-stimulated gene 6 (TSG-6) is an anti-inflammatory protein highly expressed in osteoarthritis (OA), but its influence on the course of OA is unknown. METHODS: Cartilage injury was assessed by murine hip avulsion or by recutting rested explants. Forty-two previously validated injury genes were quantified by real-time polymerase chain reaction in whole joints following destabilization of the medial meniscus (DMM) (6 hours and 7 days). Joint pathology was assessed at 8 and 12 weeks following DMM in 10-week-old male and female fibroblast growth factor 2 (FGF2)-/- , TSG-6-/- , TSG-6tg (overexpressing), FGF2-/- ;TSG-6tg (8 weeks only) mice, as well as strain-matched, wild-type controls. In vivo cartilage repair was assessed 8 weeks following focal cartilage injury in TSG-6tg and control mice. FGF2 release following cartilage injury was measured by enzyme-linked immunosorbent assay. RESULTS: TSG-6 messenger RNA upregulation was strongly FGF2-dependent upon injury in vitro and in vivo. Fifteeen inflammatory genes were significantly increased in TSG-6-/- joints, including IL1α, Ccl2, and Adamts5 compared with wild type. Six genes were significantly suppressed in TSG-6-/- joints including Timp1, Inhibin ßA, and podoplanin (known FGF2 target genes). FGF2 release upon cartilage injury was not influenced by levels of TSG-6. Cartilage degradation was significantly increased at 12 weeks post-DMM in male TSG-6-/- mice, with a nonsignificant 30% reduction in disease seen in TSG-6tg mice. No differences were observed in cartilage repair between genotypes. TSG-6 overexpression was unable to prevent accelerated OA in FGF2-/- mice. CONCLUSION: TSG-6 influences early gene regulation in the destabilized joint and exerts a modest late chondroprotective effect. Although strongly FGF2 dependent, TSG-6 does not explain the strong chondroprotective effect of FGF2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA