Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125139

RESUMEN

Degumming is a critical process in the purification of natural fibers, essential for enhancing their quality and usability across various applications. Traditional degumming methods employed for natural fibers encounter inherent limitations, encompassing prolonged procedures, excessive energy consumption, adverse environmental impact, and subpar efficiency. To address these challenges, a groundbreaking wave of degumming technique has emerged, transcending these constraints and heralding a new era of efficiency, sustainability, and eco-friendly techniques. This study represents the Firmiana simplex bark (FSB) fiber's delignification by using deep eutectic solvents (DESs). The study explores the application of deep eutectic solvents, by synthesizing different types of DES using a hydrogen bond acceptor (HBA) and four representative hydrogen bond donors (HBDs) for FSB fiber degumming. This study investigates the morphologies, chemical compositions, crystallinities, and physical properties of Firmiana simplex bark fibers before and after the treatment. Furthermore, the effects and mechanisms of different DESs on dispersing FSB fibers were examined. The experimental results showed that choline chloride-urea (CU)-based DES initiates the degumming process by effectively disrupting the hydrogen bond interaction within FSB fibers, primarily by outcompeting chloride ions. Following this initial step, the DES acts by deprotonating phenolic hydroxyl groups and cleaving ß-O-4 bonds present in diverse lignin units, thereby facilitating the efficient removal of lignin from the fibers. This innovative approach resulted in significantly higher degumming efficiency and ecofriendly as compared to traditional methods. Additionally, the results revealed that CU-based DES exhibits the utmost effectiveness in degumming FSB fibers. The optimal degumming conditions involve a precise processing temperature of 160 °C and a carefully controlled reaction time of 2 h yielding the most favorable outcomes. The present study presents a novel straightforward and environmentally friendly degumming method for Firmiana simplex bark, offering a substantial potential for enhancing the overall quality and usability of the resulting fibers. Our findings open new pathways for sustainable fiber-processing technologies.

2.
Carbohydr Polym ; 342: 122423, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048207

RESUMEN

Recent scientific interest has surged in the application of bioresources within nanotechnology, primarily because of their eco-friendly nature, wide availability, and cost-effectiveness. Jute is globally recognized as the second most prevalent source of natural cellulose fibers, and it produces a significant quantity of jute sticks as a byproduct. Nanocellulose (NC), which includes cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC), exhibits exceptional properties such as high strength, toughness, crystallinity, thermal stability, and stiffness. These attributes enable its versatile use across various sectors. The extensive surface areas and abundant hydroxyl groups of nanocellulose allow for diverse surface modifications, facilitating the design of advanced functional materials. This comprehensive review provides an overview of recent advancements in the synthesis, characterization, and potential applications of nanocellulose derived from jute. As a versatile natural fiber, jute holds immense potential across various research domains, including nanocellulose synthesis, scaffold fabrication, nanocarbon material preparation, life sciences, electronics and energy storage devices, drug delivery systems, nanomaterial synthesis, food packaging and paper industries. Additionally, its use extends to polymeric nanocomposites, sensors, and coatings. This study summarizes the extensive utilization of jute, emphasizing its versatility and potential across diverse research fields.

3.
Membranes (Basel) ; 13(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36984666

RESUMEN

Formamidinium lead bromide (FAPbBr3) nanocrystals have emerged as a powerful platform for optoelectronic applications due to their pure green photoluminescence (PL). However, their low colloidal stability under storage and operation reduces the potential use of FAPbBr3 perovskite nanocrystals (PeNCs) in various applications. In this study, we prepared the poly(L-lactic acid) (PLLA) nanofibrous membrane embedded with FAPbBr3 perovskite nanocrystals by electrospinning the perovskite and PLLA precursor solution. This is a simple and low-cost technique for the direct confinement of nano-sized functional materials in the continuous polymer nanofibres. PLLA as a polymer matrix provided a high surface framework to fully encapsulate the perovskite NCs. In addition, we found that FAPbBr3 PeNCs crystallize spontaneously inside the PLLA nanofibre. The resultant PLLA-FAPbBr3 nanofibrous membranes were stable and remained in the water for about 45 days without any evident decomposition. The results of this research support the idea of new possibilities for the production of air-stable FAPbBr3 PeNCs by forming a composite with PLLA polymer. The authors believe this study is a new milestone in the development of highly stable metal halide perovskite-based nanofibres, which allow for potential use in lasers, waveguides, and flexible energy harvesters.

4.
Carbohydr Polym ; 227: 115343, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31590883

RESUMEN

Porous poly(L-lactic acid) (PLLA) nanofibrous membrane with the high surface area was developed by electrospinning and post acetone treatment and used as a substrate for deposition of chitosan. Chitosan was coated onto porous nanofibrous membrane via direct immersion coating method. The porous PLLA/chitosan structure provided chitosan a high surface framework to fully and effectively adsorb heavy metal ions from water and showed higher and faster ion adsorption. The composite membrane was used to eliminate copper ions from aqueous solutions. Chitosan acts as an adsorbent due to the presence of aminic and hydroxide groups which are operating sites for the capture of copper ions. The maximum adsorption capacity of copper ions reached 111.66 ± 3.22 mg/g at pH (7), interaction time (10 min) and temperature (25 °C). The adsorption kinetics of copper ions was established and was well agreed with the second-order model and Langmuir isotherm. Finally, the thermodynamic parameters were studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA