RESUMEN
All inorganic free-lead halide double perovskites are attractive materials in solar energy harvesting applications. In this study, density functional theory calculations have been used to predict the structures, band structures, and density of states of Cs2PtI6 - xBrx with (x = 0, 2, 4, and 6). The optical properties (reflectivity, refractive index, absorption, dielectric function, conductivity, and loss function) of these materials have been predicted and discussed. The band edges calculations showed that the Cs2PtI6 - xBrx may be an efficient visible-light photocatalyst for water splitting and CO2 reduction. The calculated bandgap value of Cs2PtI6 exhibited a great match with the reported experimental values. It has been seen that increasing the doping content of Br- in Cs2PtI6 - xBrx (x = 0, 2, 4, and 6) increases the bandgaps from 1.4 eV to 2.6 eV and can be applied in single junction and tandem solar cells. Using Solar Cell Capacitance Simulator (SCAPS), a 1D device modelling has been performed on Cs2PtI6 inorganic lead-free solar cells. For the fully inorganic device, the effect of replacing organic hole transport materials (HTL) and electron transport materials (ETL) with inorganic ones is investigated while keeping high efficiencies and stabilities of solar cell devices. From the obtained results, it was found that WS2 as ETL and Cu2O as HTL were the most suitable materials compared to the others. Further investigation studies are performed on the effect of changing metal back contact work function, absorber layer thickness, doping density, and defect density on the power conversion efficiency (PCE) of the solar cell. The optimized suggested structure (FTO/WS2/Cs2PtI6/Cu2O/Carbon) obtained a PCE of 17.2% under AM1.5 solar illumination.
RESUMEN
CeO2, NiO and their nanocomposite were synthesized using facile sonochemical technique. XRD assure single phase CeO2 and NiO while the nanocomposite consists of the two phases only. CeO2 nanoparticles possess cubic shape, NiO was formed in nanorods, and CeO2 decorated the NiO nanorods in the nanocomposite. The magnetic behavior of the nanocomposite lies between those of the two parents with a ferromagnetic tendency. Metal oxide nanoparticles acted as catalyst in the formation of carbon nanofibers (CNFs), while the nanocomposite leads to the production of carbon nanotubes. The photocatalyst (CeO2-NiO) achieved complete dye degradation (100%) in light for the tested dye at 50â¯min. The decay products were analyzed using GC mass confirming mineralization of Bb red dye.
RESUMEN
Cu0.5Zn0.5Fe2O4 nanocrystallite powders (average size 13 nm) were synthesized from Cu-Zn spent catalyst (fertilizers) industries and ferrous sulfate wastes formed during iron and steel making. Cu-Zn catalyst (22.4% Cu and 26.4% Zn) was chemically treated with sulfuric acid at temperature 80 degrees C for 1 hr for the complete dissolving of copper and zinc into sulfate solution, then the produced solution was mixed with stoichiometric ratio of ferrous sulfate and the mixture was chemically precipitated as hydroxides followed by hydrothermal processing. The parameters affecting the magnetic properties and crystallite size of the produced ferrites powder e.g., temperature, time, and pH were systemically studied. X-ray diffraction analysis was used in order to determine the average crystallite size and phase identifications of the produced powder. The magnetic properties were studied by vibrating sample magnetometry. The results showed that the average crystallite size of the powder decreased for the ferrites powder formed at 150 degrees C and then increased by increasing the temperature to 200 degrees C. Interestingly, the saturation magnetization (Bs), remanent magnetization (Br) and coercive force (Hc) were 25.03 emu/g, 0.71 emu/g, and 4.83 Oe, respectively at hydrothermal temperature 150 degrees C for 24 hr and changed to 16.38 emu/g, 0.3864 emu/g, and 5.2 Oe at 150 degrees C and 72 hr. The produced nanoferrite powders are used for studying the catalytic activity of CO conversion to CO2 at different temperatures, pH and times. The maximum conversion (82%) is obtained at temperature 150 degrees C for 24 hrs and pH 12.
Asunto(s)
Cobre/química , Compuestos Férricos/química , Óxidos/química , Zinc/química , Catálisis , Cristalización , Nanoestructuras/química , Termodinámica , Difracción de Rayos XRESUMEN
A point source is used to investigate the effect of water phantom thickness and source-to-detector distance (SDD) on the sensitivity and counting efficiency of a rectangular detector gamma camera. The increase in water thickness resulted in an increase in scatter fraction, a decrease in sensitivity, and counting efficiency. The increase in SDD resulted in a decrease in sensitivity and an increase in counting efficiency. An SDD of 0.79±0.02m is found to provide a good compromise for acceptable sensitivity and reasonable counting efficiency.