Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Macromol Rapid Commun ; 43(7): e2100839, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35040533

RESUMEN

A new acceptor unit anthra[1,2-b: 4,3-b': 6,7-c'']trithiophene-8,12-dione (А3Т) (A2) is synthesized and used to design D-A1 -D-A2 medium bandgap donor copolymers with same thiophene (D) and A2 units but different A1, i.e., fluorinated benzothiadiazole (F-BTz) and benzothiadiazole (BTz) denoted as P130 and P131, respectively. Their detailed optical and electrochemical properties are examined. The copolymers show good solubility in common organic solvents, broad absorption in the visible spectral region from 300 to 700 nm, and deeper HOMO levels of -5.45 and -5.34 eV for P130 and P131, respectively. Finally, an optimized polymer solar cell (PSC) based on P131 as the donor and narrow bandgap non-fullerene small molecule acceptor Y6 demonstrated a power conversion efficiency (PCE) of >11.13%. To further improve the efficiency of the non-fullerene PSC, the P130 is optimized by introducing a fluorine atom into the BTz unit, F-BTz acceptor unit, and PCE PSC based on P130: Y6 active layer increased to >15.28%, which is higher than that for the non-fluorinated analog P131:Y6. The increase in the PCE for former PSC is attributed to the more crystalline nature and compact π-π stacking distance, leading to more balanced charge transport and reduced charge recombination. These remarkable results demonstrate that A3T-based copolymer P130 with F-BTz as the second acceptor is a promising donor material for high-performance PSCs.

2.
Macromol Rapid Commun ; 43(9): e2200060, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218257

RESUMEN

Two D-A copolymers consisting of fused ring pyrrolo-dithieno-quinoxaline acceptors are synthesized with different donor units, i.e., benzodithiophene (BDT) with alkylthienyl (P134) and 2-ethylhexyloxy (P117) side chains. These copolymers are used as donors and a narrow bandgap acceptor Y6 to fabricate bulk heterojunction polymer solar cell devices. Owing to the strong electron-deficient fused ring pyrrolo-bithieno-quinoxaline and weak alkyl thienyl side chains in BDT, the polymer solar cells (PSCs) based on P134:Y6 attain the power conversion efficiency (PCE) of 15.42%, which is higher than the P117:Y6 counterpart (12.14%). The superior value of PCE for P134:Y6 can be associated with more well-adjusted charge transport, weak charge recombination, proficient exciton generation, and dissociation into free charge carriers and their subsequent charge collection owing to the dense π-π stacking distance and more considerable crystal coherence length for the P134:Y6 thin films. This investigation confirms the great potential of a strong acceptor-weak donor tactic for developing efficient D-A copolymers consists of quinoxaline acceptor for PSCs.

3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743090

RESUMEN

The virucidal activity of a series of cationic surfactants differing in the length and number of hydrophobic tails (at the same hydrophilic head) and the structure of the hydrophilic head (at the same length of the hydrophobic n-alkyl tail) was compared. It was shown that an increase in the length and number of hydrophobic tails, as well as the presence of a benzene ring in the surfactant molecule, enhance the virucidal activity of the surfactant against SARS-CoV-2. This may be due to the more pronounced ability of such surfactants to penetrate and destroy the phospholipid membrane of the virus. Among the cationic surfactants studied, didodecyldimethylammonium bromide was shown to be the most efficient as a disinfectant, its 50% effective concentration (EC50) being equal to 0.016 mM. Two surfactants (didodecyldimethylammonium bromide and benzalkonium chloride) can deactivate SARS-CoV-2 in as little as 5 s.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Desinfectantes , Desinfectantes/química , Desinfectantes/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , SARS-CoV-2 , Tensoactivos/química , Tensoactivos/farmacología
4.
Langmuir ; 35(51): 16915-16924, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31763846

RESUMEN

Changes in the affinity of the swollen and collapsed forms of a thermoresponsive polymer gel for targeted ligands can be directly estimated using a thermodynamic approach based on high-sensitivity differential scanning calorimetry (HS-DSC). For macromolecular ligands (proteins) bound to the gel, this method provides information on changes in their conformational stability, which is of crucial importance for the biological or pharmaceutical activity of the protein. We used HS-DSC for the study of interactions of two widely administrated drugs-gemfibrozil and ibuprofen-and two globular proteins-α-lactalbumin and BSA-with hydrogels of the cross-linked poly(methoxyethylaminophosphazene). The gel collapse resulted in a substantial increase in the gel affinity for the drugs. We obtained quantitative estimations of the affinity of the collapsed gels depending on the gel structure, pH, concentration of NaCl, and phosphate buffer (an inductor of the thermoresponsivity). The gels retained a high affinity for the drugs in the near-physiological conditions (ionic composition and pH). The binding curves of globular proteins to the gels in the swollen and collapsed states were obtained. The different proteins demonstrated the preferential binding to the swollen or collapsed state of the gels, presumably depending on the protein surface hydrophobicity. The proteins bound to the gel subchains retain their native tertiary structure and, therefore, maintain their functionality when immobilized in the polyphosphazene hydrogels.

5.
Langmuir ; 34(47): 14378-14387, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30392359

RESUMEN

We investigated energetics of binding of multifunctional pyranine ligands to hydrogels of the cross-linked poly(methoxyethylaminophosphazene) (PMOEAP) from data on the thermotropic volume phase transition of the gels by means of high-sensitivity differential scanning calorimetry. Dependences of the transition temperature, enthalpy, and width on the concentration of pyranines were obtained, and the excess transition free energy as a function of the pyranine concentration was calculated. We found that the affinity of the gels for the pyranine ligands increased very significantly upon the gel collapse. The intrinsic binding constants and free energies of binding of the ligands to the gels in the collapsed state were estimated from the DSC data. They revealed a significant increase in the hydrogel affinity for pyranines proportional to the number of anionic groups in the ligand structure. The affinity of the PMOEAP hydrogels for the multifunctional ligands was not affected by an increase in the cross-linking density of the gels and only slightly reduced by physiological salt concentrations.

6.
J Chem Phys ; 146(21): 211104, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595414

RESUMEN

Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

7.
Langmuir ; 32(46): 12166-12174, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27802053

RESUMEN

The interactions between ions and phospholipids are closely associated with the structures and functions of cell membrane. Instead of conventional aqueous systems, we systematically investigated the effects of inorganic ions on the self-assembly of lecithin, a zwitterionic phosphatidylcholine, in cyclohexane. Previous studies have shown that addition of inorganic salts with specific divalent and trivalent cations can transform lecithin organosols into organogels. In this study, we focused on the effect of monovalent alkali halides. Fourier transform infrared spectroscopy was used to demonstrate that the binding strength of the alkali cations with the phosphate of lecithin is in the order Li+ > Na+ > K+. More importantly, the cation-phosphate interaction is affected by the paired halide anions, and the effect follows the series I- > Br- > Cl-. The salts of stronger interactions with lecithin, including LiCl, LiBr, LiI, and NaI, were found to induce cylindrical micelles sufficiently long to form organogels, while others remain organosols. A mechanism based on the charge density of ions and the enthalpy change of the ion exchange between alkali halides and lecithin headgroup is provided to explain the contrasting interactions and the effectiveness of the salts to induce organogelation.

8.
Soft Matter ; 12(3): 689-704, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26539842

RESUMEN

We propose a new concept for the design of artificial enzymes from synthetic protein-like copolymers and non-natural functional monomers which in terms of their affinity for water can be divided into two categories: hydrophobic and hydrophilic. Hydrophilic monomers comprise catalytically active groups similar to those in the corresponding amino acid residues. A key ingredient of our approach is that the target globular conformation of protein-like, core-shell morphology with multiple catalytic groups appears spontaneously in the course of controlled radical polymerization in a selective solvent. As a proof of concept, we construct a fully synthetic analog of serine hydrolase, e.g.α-chymotrypsin, using the conformation-dependent sequence design approach and multiscale simulation that combines the methods of "mesoscale chemistry" and atomistic molecular dynamics (MD). A 100 ns GPU-accelerated MD simulation of the designed polymer-supported catalyst in the aqueous environment provides valuable information on the structural organization of this system that has been synthesized in our Lab.

9.
Soft Matter ; 12(23): 5138-45, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27198966

RESUMEN

By means of computer simulation, we studied macromolecules composed of N dumbbell amphiphilic monomer units with attractive pendant groups. In poor solvents, these macromolecules form spherical globules that are dense in the case of short chains (the gyration radius RG∼N(1/3)), or hollow inside and obey the RG∼N(1/2) law when the macromolecules are sufficiently long. Due to the specific intramolecular nanostructuring, the vesicle-like globules of long amphiphilic macromolecules posses some properties of fractal globules, by which they (i) could demonstrate the same scaling statistics for the entire macromolecule and for short subchains with m monomer units and (ii) possess a specific territorial structure. Within a narrow slit, the globule loses its inner cavity, takes a disk-like shape and scales as N(1/2) for much shorter macromolecules. However, the field of end-to-end distance r(m) ∼m(1/2) dependence for subchains becomes visibly smaller. The results obtained were compared with the homopolymer case.

10.
J Chem Phys ; 145(4): 044904, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27475394

RESUMEN

Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

11.
Soft Matter ; 10(43): 8765-76, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25278263

RESUMEN

The dynamic modulus and the loss factor of magnetorheological elastomers (MREs) of various compositions and anisotropies are studied by dynamic torsion oscillations performed in the absence and in the presence of an external magnetic field. The emphasis is on the Payne effect, i.e. the dependence of the elastomer magnetorheological characteristics on the strain amplitude and their evolution with cyclically increasing and decreasing strain amplitudes. MREs are based on two silicone matrices differing in storage modulus (soft, G' ∼ 10(3) Pa, and hard, G' ∼ 10(4) Pa, matrices). For each matrix, the concentration of carbonyl iron particles with diameters of 3-5 µm was equal to 70 and 82 mass% (22 and 35 vol%, respectively) in the composite material. Samples for each filler content, isotropic and aligned-particles, are investigated. It is found that the Payne effect significantly increases in the presence of an external magnetic field and varies with the cyclical loading which reaches saturation after several cycles. The results are interpreted as the processes of formation-destruction-reformation of the internal filler structure under the simultaneously applied mechanical force and magnetic field. Impacts of matrix elasticity and magnetic interactions on the filler alignment are elucidated.

12.
Food Res Int ; 177: 113855, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225130

RESUMEN

Interaction of bovine ß-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration. These thermodynamic effects disclose the preferential FC binding to the unfolded form of BLG. By the obtained calorimetric data, the free energies of FC binding vs. the FC concentrations were calculated. These dependences were shown to be linear. Their slope relates closely to the overall FC affinity for the unfolded BLG in terms of the Langmuir binding model. The overall BLG affinity for FC varies from 20 M-1 (2-methylpyrazine) up to 360 M-1(nonanone). The maximal stoichiometry of the BLG-FC complexes was roughly estimated as a ratio of the length of the unfolded BLG to the molecular length of FC. Using these estimates, the apparent BLG-FC binding constants were determined. They are in the range of 0.3-8.0 M-1 and correlated strictly with the FC lipophilicity descriptor (logP).


Asunto(s)
Calor , Lactoglobulinas , Animales , Bovinos , Lactoglobulinas/química , Calorimetría , Termodinámica , Entropía , Cetonas
13.
Langmuir ; 29(12): 3879-88, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23441904

RESUMEN

It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.


Asunto(s)
Ácidos y Sales Biliares/química , Lecitinas/química , Micelas , Aceites/química , Alcanos/química , Ciclohexanos/química , Elasticidad , Enlace de Hidrógeno , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
14.
Langmuir ; 29(7): 2273-81, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23339768

RESUMEN

Ternary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and high-sensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl). A complete immobilization of insulin in the complexes was observed in a wide range of the reaction mixture compositions. The ternary complexes were shown to dissolve and dissociate under conditions imitating the human intestinal environment (pH 8.3, 0.15 M NaCl). The products of the complex dissociation were free insulin and soluble binary Insulin-PMAP complexes. The conformational stability of insulin in the soluble complexes of various compositions was investigated by high-sensitivity differential scanning calorimetry. The dependence of the excess denaturation free energy of insulin in these complexes on the PMAP content was obtained. The binding constants of the folded and unfolded forms of insulin to the PMAP polycation were estimated. Proteolysis of insulin involved in the insoluble ternary complexes by pepsin was investigated under physiological conditions. It was found that the complexes ensure an almost 100% protection of insulin against proteolytic degradation. The obtained results provide a perspective basis for development of oral insulin preparations.


Asunto(s)
Sulfato de Dextran/química , Insulina/administración & dosificación , Insulina/química , Compuestos Organofosforados/química , Polímeros/química , Administración Oral
15.
ACS Omega ; 8(2): 1989-2000, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687083

RESUMEN

We have designed a new medium bandgap non-fullerene small-molecule acceptor consisting of an IDT donor core flanked with 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]-thiophene-4-ylidene) malononitrile (TC) acceptor terminal groups (IDT-TC) and compared its optical and electrochemical properties with the IDT-IC acceptor. IDT-TC showed an absorption profile from 300 to 760 nm, and it has an optical bandgap of 1.65 eV and HOMO and LUMO energy levels of -5.55 and -3.83 eV, respectively. In contrast to IDT-IC, IDT-TC has an upshifted LUMO energy level, which is advantageous for achieving high open-circuit voltage. Moreover, IDT-TC showed higher crystallinity and high electron mobility than IDT-IC. Using a wide bandgap D-A copolymer P as the donor, we compared the photovoltaic performance of IDT-TC, IDT-IC, and IDT-IC-Cl nonfullerene acceptors (NFAs). Polymer solar cells (PSCs) using P: IDT-TC, P: IDT-IC, and P:IDT-IC-Cl active layers achieved a power conversion efficiency (PCE) of 14.26, 11.56, and 13.34%, respectively. As the absorption profiles of IDT-IC-Cl and IDT-TC are complementary to each other, we have incorporated IDT-TC as the guest acceptor in the P: IDT-IC-Cl active layer to fabricate the ternary (P:IDT-TC: IDT-IC-Cl) PSC, demonstrating a PCE of 16.44%, which is significantly higher than that of the binary BHJ devices. The improvement in PCE for ternary PSCs is attributed to the efficient exploitation of excitons via energy transfer from IDT-TC to IDT-IC-Cl, suitable nanoscale phase separation, compact stacking distance, and more evenly distributed charge transport.

16.
Int J Biol Macromol ; 250: 126265, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567527

RESUMEN

Energetics of chitosan (CS) polyplexes and conformational stability of bound DNA were studied at pH 5.0 by ITC and HS-DSC, respectively. The CS-DNA binding isotherm was well approximated by the McGhee-von Hippel model suggesting the binding mechanism to be a cooperative attachment of interacting CS ligands to the DNA matrix. Melting thermograms of polyplexes revealed the transformation of different conformational forms of bound DNA in dependence on the CS/DNA weight ratio rw. At 0

17.
J Chem Phys ; 136(1): 014504, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22239786

RESUMEN

A Flory-Huggins type lattice approach is used to describe theoretically a heterogeneous mixture composed of an ionic liquid (IL) and a nonionic liquid (nIL). It is analyzed, how the behavior of the system depends on the difference in the affinities of the cations and the anions to the neutral molecules (i.e., on the "amphiphilicity" of the IL with respect to the nIL). It is proved that if the difference in the affinities is not large, two macrophases coexist in the mixture; if the difference exceeds a certain threshold value, the mixture becomes microheterogeneous: depending on its composition, it can turn either into ion clusters dispersed over the phase having low concentration of ions, or into clusters of neutral molecules dispersed over the phase having high concentration of ions. If the system is not close to the critical point, the ion clusters can be only small: the maximal ratio of their diameter to an ion diameter is of the order of ten; however, the clusters of nonionic molecules can be large, if the difference in the affinities has a certain value. It is predicted also that cavities can nucleate inside an IL, and clusters of ions can appear in a saturated vapor of an IL.


Asunto(s)
Líquidos Iónicos/química , Teoría Cuántica , Interacciones Hidrofóbicas e Hidrofílicas
18.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746017

RESUMEN

Antiseptic polymer gel-surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of vinylpyrrolidone and sodium methacrylate. It was shown that the rate of the release of the cationic disinfectant from the oppositely charged polymer gels could be tuned in a fairly broad range by varying the concentration of the disinfectant, the degree of swelling, and degree of cross-linking of the gel and the content/type of anionic repeat units in the polymer matrix. Polymer-surfactant complexes were demonstrated to reduce SARS-CoV-2 titer by seven orders of magnitude in as little as 5 s. The complexes retained strong virucidal activity against SARS-CoV-2 for at least one week.

19.
Langmuir ; 27(18): 11582-90, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21830752

RESUMEN

The interaction of DNA with a synthetic biocompatible and biodegradable cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP·HCl), was investigated by high-sensitivity differential scanning calorimetry under conditions of strong and weak electrostatic interactions of the macroions. Thermodynamic parameters of the DNA double-helix melting were determined as a function of pH and the PMAP·HCl/DNA weight ratio. PMAP·HCL was shown to reveal two functions with respect to DNA: the polyelectrolyte function and the donor-acceptor one. The first function stabilizes the helical conformation of DNA, and the second one destabilizes it. The stabilizing effect of PMAP·HCl is of entropic origin, related to a displacement of mobile counterions from the DNA's nearest surroundings by the poly(methylaminophosphazene) charged groups. The donor-acceptor function of poly(methylaminophosphazene) dominates when its electrostatic interaction with DNA is either saturated (in the complex coacervate phase at high poly(methylaminophosphazene) concentrations) or completely suppressed (in a salt medium when the polycation carries a small charge). Under these conditions, poly(methylaminophosphazene) destabilizes DNA. It preferentially binds to the DNA coil form likely via the formation of multiple labile hydrogen bonds with the donor-acceptor groups of DNA.


Asunto(s)
Materiales Biocompatibles/farmacología , ADN/química , Compuestos Organofosforados/farmacología , Polímeros/farmacología , Animales , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno , Conformación de Ácido Nucleico/efectos de los fármacos , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Concentración Osmolar , Termodinámica
20.
Langmuir ; 27(12): 7714-21, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21612233

RESUMEN

The interaction of poly(methylaminophosphazene) hydrochloride (PMAP·HCl) of varying degrees of ionization (f) with the potassium salt of ι-carrageenan was studied by high-sensitivity differential scanning calorimetry at a KCl concentration of 0.15 M, which is included for the purpose of stabilizing the helix conformation of the polysaccharide up to 55 °C. The conditions of strong (pH 3.8, I = 0.15), moderate (pH 7.4, I = 0.15), and weak (pH 7.4, I = 0.25) electrostatic interactions of the polyelectrolytes were considered. The thermodynamic parameters of the helix-coil transition of ι-carrageenan were determined as a function of the polycation/polyanion ratio. We show that the interpolyelectrolyte reaction between PMAP·HCl and ι-carrageenan results in a complete unfolding of the polysaccharide helix under conditions of strong electrostatic interaction and increases its stability under conditions of medium and weak electrostatic interactions. The formation of stoichiometric PMAP-carrageenan interpolyelectrolyte complexes proceeded via a cooperative mechanism at pH 3.8 (f = 0.5) and pH 7.4 (f = 0.2) at an ionic strength of 0.15. In contrast, the complexation at pH 7.4 and an ionic strength of 0.25 could be considered to be a consecutive competitive binding of charged units of poly(methylaminophosphazene) to the oppositely charged polysaccharide matrix in the helix or coil conformation. Binding constants of the polycation to the helix and coil forms of ι-carrageenan were estimated. They revealed a preferential binding of the polycation to the helix form of the polysaccharide.


Asunto(s)
Rastreo Diferencial de Calorimetría/normas , Carragenina/química , Electrólitos/química , Compuestos Organofosforados/química , Polímeros/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Concentración Osmolar , Espectrofotometría Infrarroja , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA