Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell Environ ; 37(2): 353-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23808399

RESUMEN

The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrently, the root-specific gene MT1b1 was 1000-fold up-regulated. Immunolocalizations provided the first evidence for accumulation of MT1a and MT2a proteins in planta, with correlation to transcript levels. In developing grains, MT2a and MT4 expression increased 4- and 300-fold over a 28-day-period after pollination. However, among the MT grain transcripts MT2c was the most abundant, whereas MT4 was the least abundant. Excess Cu up-regulated three out of the six MTs expressed in leaves of young barley plants. In contrast, most MTs were down-regulated by excess Zn or Cd. Zn starvation led to up-regulation of MT1a, whereas Cu starvation up-regulated MT2a, which has two copper-responsive elements in the promoter. Arabidopsis lines constitutively overexpressing barley MT2a showed increased sensitivity to excess Cd and Zn but no Cu-induced response. We suggest that barley MTs are differentially involved in intracellular homeostasis of essential metal ions and that a subset of barley MTs is specifically involved in Cu detoxification.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/efectos de los fármacos , Metalotioneína/metabolismo , Metales Pesados/farmacología , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Cadmio/farmacología , Cobre/farmacología , Regulación del Desarrollo de la Expresión Génica , Germinación/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Zinc/farmacología
2.
Plant Physiol ; 159(3): 1125-37, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22582132

RESUMEN

Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.


Asunto(s)
Hordeum/metabolismo , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Zinc/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Cadmio/toxicidad , Cromatografía en Gel , Cobre/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/efectos de los fármacos , Hordeum/genética , Hordeum/ultraestructura , Espectrometría de Masas , Metalotioneína/química , Metalotioneína/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Alineación de Secuencia
3.
Plant J ; 56(5): 756-67, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18643996

RESUMEN

Loss of aquaporin TIP1;1 in Arabidopsis has been suggested to result in early senescence and plant death. This was based on the fact that a partial reduction of TIP1;1 by RNA interference (RNAi) led to gradual phenotypes, ranging from indistinguishable from wild type to lethality, depending on the degree of downregulation of the target messenger, and displaying pleiotropic effects in primary metabolism and cell signalling. A hypothesis was put forward to suggest that TIP1;1, apart from its transport function, may play an essential role in vesicle routing. Here we identify an Arabidopsis transposon insertion line tip1;1-1 that is completely devoid of TIP1;1 protein, as demonstrated by western blotting and immunolocalization using an isoform-specific antibody. Strikingly, the complete absence of the protein did not result in any significant effect on metabolism or elemental composition of the plants. Microarray analysis did not indicate increased expression of other aquaporins to compensate for the lack of TIP1;1 in tip1;1-1. We further developed a double mutant of TIPs in Arabidopsis, lacking both TIP1;1 and its closest paralog TIP1;2. Arabidopsis mutants lacking both TIP1;1 and TIP1;2 showed a minor increase in anthocyanin content, and a reduction in catalase activity, but showed no changes in water status. In contrast to earlier reports, plants lacking TIP1;1 and TIP1;2 aquaporins are alive and thriving. We suggest that RNAi directed towards TIP1;1 may have resulted in off-target gene silencing, a notion that is potentially interesting for various studies analysing gene function by RNAi.


Asunto(s)
Aciltransferasas/metabolismo , Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Aciltransferasas/genética , Acuaporinas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutagénesis Insercional , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN de Planta/genética , Agua/fisiología
4.
Plant Cell Rep ; 28(10): 1549-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19655146

RESUMEN

Perennial ryegrass (Lolium perenne L.) is the most important turf and forage grass species of the temperate regions. It requires substantial input of nitrogen fertilizer for optimum yield. Improved nitrogen use efficiency (NUE) is therefore one of the main breeding targets. However, limited knowledge is currently available on the genes controlling NUE in perennial ryegrass. The aim of the present study was to isolate genes involved in ammonium transport and assimilation. In silico screening of a Lolium EST-library using known sequences of tonoplast intrinsic proteins (TIPs) and cytosolic glutamine synthetase (GS1) revealed a number of homologous sequences. Using these sequences, primers were designed to obtain the full-length sequences by RACE-PCR. Three TIP genes (LpTIP1;1, LpTIP1;2 and LpTIP2;1) and two GS genes (LpGS1a and LpGS1b) were isolated. Characterization in S. cerevisiae confirmed a function in ammonium transport for LpTIP1;1 and LpTIP2;1 and in synthesis of glutamine for LpGS1a and LpGS1b. Cytoimmunochemical studies showed that GS protein was present in the chloroplasts and cytosol of leaf cells, while TIP1 proteins localized to the tonoplast. At the expression level, Lolium GS1 genes responded to N starvation and re-supply in a manner consistent with functions in primary N assimilation and N remobilization. Similarly, the expression of LpTIPs complied with a role in vacuolar ammonium storage. Together, the reported results provide new understanding of the genetic basis for N assimilation and storage in ryegrass.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Lolium/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Clonación Molecular , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Lolium/enzimología , Proteínas de la Membrana/genética , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Isoformas de Proteínas , ARN de Planta/genética
5.
Plant Mol Biol ; 67(1-2): 89-105, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18288574

RESUMEN

We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat.


Asunto(s)
Glutamato-Amoníaco Ligasa/fisiología , Proteínas de Plantas/fisiología , Triticum/enzimología , Secuencia de Aminoácidos , Clonación Molecular , Citosol/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Datos de Secuencia Molecular , Familia de Multigenes , Floema/enzimología , Floema/fisiología , Floema/ultraestructura , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tallos de la Planta/enzimología , Tallos de la Planta/fisiología , Tallos de la Planta/ultraestructura , Alineación de Secuencia , Triticum/fisiología , Triticum/ultraestructura
6.
Planta ; 225(1): 165-81, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16804706

RESUMEN

The mobilization of nitrogen (N) compounds and the roles played by glumes and the flag leaf during grain filling were studied in bread wheat (Triticum aestivum L. cv. Florida) grown under field conditions. Glumes lost twice as much of their total N content as that lost by the flag leaf between the milk and early dough stages. In the flag leaf, glumes and grains, Glu, Asp, Ser and Ala accounted for 85% of all the reductions in the free amino acid pool. Principal component analysis of free amino acid pools separated grains from the glumes and the flag leaf, suggesting grain specific regulations in the use of free amino acids in protein synthesis. In all three organs, no decrease in Gln was detected, probably due to steady glutamine synthetase (GS; EC 6.3.1.2) activities per soluble protein in both the flag leaf and glumes. Compared with the flag leaf, glumes presented relatively smaller amounts of the chloroplast GS associated isoform. This we show is due to a lower relative number of mesophyll cells in glumes as supported by the different anatomy and the cellular pattern of the GS immunolocalization. We argue that cellular distribution plays a key role in supporting metabolism to enable the various functions undertaken by glume tissue.


Asunto(s)
Nitrógeno/metabolismo , Semillas/metabolismo , Triticum/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Immunoblotting , Microscopía Electrónica de Transmisión , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Estructuras de las Plantas/metabolismo , Estructuras de las Plantas/ultraestructura , Semillas/ultraestructura , Triticum/ultraestructura
7.
New Phytol ; 169(2): 265-78, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16411930

RESUMEN

In wheat the period of grain filling is characterized by a transition for all vegetative organs from sink to source status. To study this transition, the progression of physiological markers and enzyme activities representative of nitrogen metabolism was monitored from the vegetative stage to maturity in different leaf stages and stem sections of two wheat (Triticum aestivum) cultivars grown at high and low levels of N fertilization. In the two cultivars examined, we found a general decrease of the metabolic and enzyme markers occurred during leaf ageing, and that this decrease was enhanced when plants were N-limited. Both correlation studies and principal components analysis (PCA) showed that there was a strong relationship among total N, chlorophyll, soluble protein, ammonium, amino acids and glutamine synthetase (GS) activity. The use of a marker such as GS activity to predict the N status of wheat, as a function of both plant development and N availability, is discussed with the aim of selecting wheat genotypes with better N-use efficiency.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Triticum/metabolismo , Flores/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Tiempo , Triticum/enzimología , Triticum/crecimiento & desarrollo
8.
Plant Cell ; 18(11): 3252-74, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17138698

RESUMEN

The roles of two cytosolic maize glutamine synthetase isoenzymes (GS1), products of the Gln1-3 and Gln1-4 genes, were investigated by examining the impact of knockout mutations on kernel yield. In the gln1-3 and gln1-4 single mutants and the gln1-3 gln1-4 double mutant, GS mRNA expression was impaired, resulting in reduced GS1 protein and activity. The gln1-4 phenotype displayed reduced kernel size and gln1-3 reduced kernel number, with both phenotypes displayed in gln1-3 gln1-4. However, at maturity, shoot biomass production was not modified in either the single mutants or double mutants, suggesting a specific impact on grain production in both mutants. Asn increased in the leaves of the mutants during grain filling, indicating that it probably accumulates to circumvent ammonium buildup resulting from lower GS1 activity. Phloem sap analysis revealed that unlike Gln, Asn is not efficiently transported to developing kernels, apparently causing reduced kernel production. When Gln1-3 was overexpressed constitutively in leaves, kernel number increased by 30%, providing further evidence that GS1-3 plays a major role in kernel yield. Cytoimmunochemistry and in situ hybridization revealed that GS1-3 is present in mesophyll cells, whereas GS1-4 is specifically localized in the bundle sheath cells. The two GS1 isoenzymes play nonredundant roles with respect to their tissue-specific localization.


Asunto(s)
Citosol/enzimología , Grano Comestible/economía , Grano Comestible/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Isoenzimas/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/aislamiento & purificación , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación/genética , Fenotipo , Floema/enzimología , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Brotes de la Planta/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Xilema/enzimología , Zea mays/citología , Zea mays/ultraestructura
9.
Plant Cell Physiol ; 46(6): 964-74, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15840646

RESUMEN

In order to improve our understanding of the regulation of nitrogen assimilation and recycling in wheat (Triticum aestivum L.), we studied the localization of plastidic (GS2) and cytosolic (GS1) glutamine synthetase isoenzymes and of glutamate dehydrogenase (GDH) during natural senescence of the flag leaf and in the stem. In mature flag leaves, large amounts of GS1 were detected in the connections between the mestome sheath cells and the vascular cells, suggesting an active transfer of nitrogen organic molecules within the vascular system in the mature flag leaf. Parallel to leaf senescence, an increase of a GS1 polypeptide (GS1b) was detected in the mesophyll cytosol of senescing leaves, while the GS protein content represented by another polypetide (GS1a) in the phloem companion cells remained practically constant in both leaves and stems. Both GDH aminating activity and protein content were strongly induced in senescing flag leaves. The induction occurred both in the mitochondria and in the cytosol of phloem companion cells, suggesting that the shift in GDH cellular compartmentation is important during leaf nitrogen remobilization although the metabolic or sensing role of the enzyme remains to be elucidated. Taken together, our results suggest that in wheat, nitrogen assimilation and recycling are compartmentalized between the mesophyll and the vasculature, and are shifted in different cellular compartments within these two tissues during the transition of sink leaves to source leaves.


Asunto(s)
Glutamato Deshidrogenasa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Triticum/enzimología , Triticum/crecimiento & desarrollo , Citosol/enzimología , Isoenzimas/metabolismo , Microscopía Inmunoelectrónica , Nitrógeno/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/citología , Tallos de la Planta/enzimología , Tallos de la Planta/crecimiento & desarrollo , Plastidios/enzimología , Fracciones Subcelulares/enzimología , Triticum/citología
10.
Plant J ; 30(3): 273-87, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12000676

RESUMEN

A novel Arabidopsis thaliana mutant, named hoc, was found to have an high organogenic capacity for shoot regeneration. The HOC locus may be involved in cytokinin metabolism leading to cytokinin-overproduction. In vitro, hoc root explants develop many shoots in the absence of exogenous growth regulators. The mutant displays a bushy phenotype with supernumerary rosettes and with normal phyllotaxy, resulting from precocious axillary meristem development. Genetic and molecular analyses show that the high shoot regeneration and the bushy phenotype are controlled by a recessive single gene, located on chromosome I, next to the GAPB CAPS marker. The mapping data and allelism tests reveal that the hoc mutant is not allelic to other reported Arabidopsis growth-regulator mutants. In darkness the hoc mutant is de-etiolated, with a short hypocotyl, opened cotyledons and true leaves. Growth regulator assays reveal that the mutant accumulates cytokinins at about two- and sevenfold the cytokinin level of wild-type plants in its aerial parts and roots, respectively. Consequently, the elevated amounts of endogenous cytokinins in hoc plants are associated with high organogenic capacity and hence bushy phenotype. Thus hoc is the first cytokinin-overproducing Arabidopsis mutant capable of auto-regenerating shoots without exogenous growth regulators.


Asunto(s)
Arabidopsis/genética , Citocininas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Mapeo Cromosómico , Citocininas/farmacología , Oscuridad , Relación Dosis-Respuesta a Droga , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/metabolismo , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Luz , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA