Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897720

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory impairment in patients. Erythropoietin (EPO) has been reported to stimulate neurogenesis. This study was conducted to determine the regenerative effects of EPO in an AD model and to assess its underlying mechanism. Recombinant human EPO was intraperitoneally administered to AD mice induced by intracerebroventricular Aß oligomer injection. Behavioral assessments with novel object recognition test and passive avoidance task showed improvement in memory function of the EPO-treated AD mice compared to that of the saline-treated AD mice (p < 0.0001). An in vivo protein assay for the hippocampus and cortex tissue indicated that EPO treatment modulated neurotransmitters, including dopamine, serotonin, and adrenaline. EPO treatment also restored the activity of serotonin receptors, including 5-HT4R, 5-HT7R, and 5-HT1aR (p < 0.01), at mRNA levels. Furthermore, EPO seemed to exert an anti-inflammatory influence by downregulating TLR4 at mRNA and protein levels (p < 0.05). Finally, an immunohistochemical assay revealed increments of Nestin(+) and NeuN(+) neuronal cells in the CA3 region in the EPO-treated AD mice compared to those in the saline-treated AD mice. The conclusion is that EPO administration might be therapeutic for AD by activating the serotonergic pathway, anti-inflammatory action, and neurogenic characteristics.


Asunto(s)
Enfermedad de Alzheimer , Eritropoyetina , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Epoetina alfa/uso terapéutico , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Hipocampo/metabolismo , Humanos , Ratones , Enfermedades Neurodegenerativas/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Serotonina/metabolismo
2.
Sci Rep ; 9(1): 3560, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837501

RESUMEN

An endomicroscope opens new frontiers of non-invasive biopsy for in vivo imaging applications. Here we report two-photon laser scanning endomicroscope for in vivo cellular and tissue imaging using a Lissajous fiber scanner. The fiber scanner consists of a piezoelectric (PZT) tube, a single double-clad fiber (DCF) with high fluorescence collection, and a micro-tethered-silicon-oscillator (MTSO) for the separation of biaxial resonant scanning frequencies. The endomicroscopic imaging exhibits 5 frames/s with 99% in scanning density by using the selection rule of scanning frequencies. The endomicroscopic scanner was compactly packaged within a stainless tube of 2.6 mm in diameter with a high NA gradient-index (GRIN) lens, which can be easily inserted into the working channel of a conventional laparoscope. The lateral and axial resolutions of the endomicroscope are 0.70 µm and 7.6 µm, respectively. Two-photon fluorescence images of a stained kidney section and miscellaneous ex vivo and in vivo organs from wild type and green fluorescent protein transgenic (GFP-TG) mice were successfully obtained by using the endomicroscope. The endomicroscope also obtained label free images including autofluorescence and second-harmonic generation of an ear tissue of Thy1-GCaMP6 (GP5.17) mouse. The Lissajous scanning two-photon endomicroscope can provide a compact handheld platform for in vivo tissue imaging or optical biopsy applications.


Asunto(s)
Endoscopía/instrumentación , Microscopía/instrumentación , Fotones , Animales , Riñón/diagnóstico por imagen , Fenómenos Mecánicos , Ratones , Fenómenos Ópticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA