Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Glia ; 68(10): 2070-2085, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32170885

RESUMEN

Myelin loss in the brain is a common occurrence in traumatic brain injury (TBI) that results from impact-induced acceleration forces to the head. Fast and abrupt head motions, either resulting from violent blows and/or jolts, cause rapid stretching of the brain tissue, and the long axons within the white matter tracts are especially vulnerable to such mechanical strain. Recent studies have shown that mechanotransduction plays an important role in regulating oligodendrocyte progenitors cell differentiation into oligodendrocytes. However, little is known about the impact of mechanical strain on mature oligodendrocytes and the stability of their associated myelin sheaths. We used an in vitro cellular stretch device to address these questions, as well as characterize a mechanotransduction mechanism that mediates oligodendrocyte responses. Mechanical stretch caused a transient and reversible myelin protein loss in oligodendrocytes. Cell death was not observed. Myelin protein loss was accompanied by an increase in intracellular Ca2+ and Erk1/2 activation. Chelating Ca2+ or inhibiting Erk1/2 activation was sufficient to block the stretch-induced loss of myelin protein. Further biochemical analyses revealed that the stretch-induced myelin protein loss was mediated by the release of Ca2+ from the endoplasmic reticulum (ER) and subsequent Ca2+ -dependent activation of Erk1/2. Altogether, our findings characterize an Erk1/2-dependent mechanotransduction mechanism in mature oligodendrocytes that de-stabilizes the myelination program.


Asunto(s)
Calcio/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mecanotransducción Celular/fisiología , Proteínas de la Mielina/deficiencia , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Quelantes del Calcio/farmacología , Ionóforos de Calcio/farmacología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Ratas
2.
Glia ; 63(9): 1522-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25988855

RESUMEN

In myelinating Schwann cells, E-cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E-cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E-cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E-cadherin deletion and over-expression in Schwann cells. In vivo, Schwann cell-specific E-cadherin ablation results in an early myelination delay. In Schwann cell-dorsal root ganglia neuron co-cultures, E-cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over-expressed in Schwann cells, E-cadherin improves myelination on Nrg1 type III(+/-) neurons and induces myelination on normally non-myelinated axons of sympathetic neurons. The pro-myelinating effect of E-cadherin is associated with an enhanced Nrg1-erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E-cadherin, Nrg1-signaling is diminished in Schwann cells. Our data also show that E-cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E-cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E-cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation.


Asunto(s)
Axones/fisiología , Cadherinas/metabolismo , Vaina de Mielina/fisiología , Neurregulina-1/metabolismo , Células de Schwann/fisiología , Animales , Western Blotting , Cadherinas/genética , Técnicas de Cocultivo , Receptores ErbB/metabolismo , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Ratones Transgénicos , Interferencia de ARN , Ratas , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/fisiología , Transducción de Señal/fisiología
3.
J Neurosci ; 32(21): 7158-68, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623660

RESUMEN

Physical damage to the peripheral nerves triggers Schwann cell injury response in the distal nerves in an event termed Wallerian degeneration: the Schwann cells degrade their myelin sheaths and dedifferentiate, reverting to a phenotype that supports axon regeneration and nerve repair. The molecular mechanisms regulating Schwann cell plasticity in the PNS remain to be elucidated. Using both in vivo and in vitro models for peripheral nerve injury, here we show that inhibition of p38 mitogen-activated protein kinase (MAPK) activity in mice blocks Schwann cell demyelination and dedifferentiation following nerve injury, suggesting that the kinase mediates the injury signal that triggers distal Schwann cell injury response. In myelinating cocultures, p38 MAPK also mediates myelin breakdown induced by Schwann cell growth factors, such as neuregulin and FGF-2. Furthermore, ectopic activation of p38 MAPK is sufficient to induce myelin breakdown and drives differentiated Schwann cells to acquire phenotypic features of immature Schwann cells. We also show that p38 MAPK concomitantly functions as a negative regulator of Schwann cell differentiation: enforced p38 MAPK activation blocks cAMP-induced expression of Krox 20 and myelin proteins, but induces expression of c-Jun. As expected of its role as a negative signal for myelination, inhibition of p38 MAPK in cocultures promotes myelin formation by increasing the number as well as the length of individual myelin segments. Altogether, our data identify p38 MAPK as an important regulator of Schwann cell plasticity and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Fibras Nerviosas Mielínicas/fisiología , Células de Schwann/metabolismo , Células de Schwann/fisiología , Degeneración Walleriana/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/biosíntesis , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neurregulina-1/farmacología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Degeneración Walleriana/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
4.
Neurotrauma Rep ; 4(1): 433-446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435356

RESUMEN

Myelin loss and oligodendrocyte death are well documented in patients with traumatic brain injury (TBI), as well as in experimental animal models after moderate-to-severe TBI. In comparison, mild TBI (mTBI) does not necessarily result in myelin loss or oligodendrocyte death, but causes structural alterations in the myelin. To gain more insight into the impact of mTBI on oligodendrocyte lineage in the adult brain, we subjected mice to mild lateral fluid percussion injury (mFPI) and characterized the early impact (1 and 3 days post-injury) on oligodendrocytes in the corpus callosum using multiple oligodendrocyte lineage markers (platelet-derived growth factor receptor [PDGFR]-α, glutathione S-transferase [GST]-π, CC1, breast carcinoma-amplified sequence 1 [BCAS1], myelin basic protein [MBP], myelin-associated glycoprotein [MAG], proteolipid protein [PLP], and FluoroMyelin™). Two regions of the corpus callosum in relation to the impact site were analyzed: areas near (focal) and anterior (distal) to the impact site. mFPI did not result in oligodendrocyte death in either the focal or distal corpus callosum, nor impact on oligodendrocyte precursors (PDGFR-α+) and GST-π+ oligodendrocyte numbers. In the focal but not distal corpus callosum, mFPI caused a decrease in CC1+ as well as BCAS1+ actively myelinating oligodendrocytes and reduced FluoroMyelin intensity without altering myelin protein expression (MBP, PLP, and MAG). Disruption in node-paranode organization and loss of Nav1.6+ nodes were observed in both the focal and distal regions, even in areas without obvious axonal damage. Altogether, our study shows regional differences in mature and myelinating oligodendrocyte in response to mFPI. Further, mFPI elicits a widespread impact on node-paranode organization that affects regions both close to and remotely located from the site of injury.

5.
Front Cell Neurosci ; 17: 1111403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066078

RESUMEN

Introduction: In vitro models of traumatic brain injury (TBI) commonly use neurons isolated from the central nervous system. Limitations with primary cortical cultures, however, can pose challenges to replicating some aspects of neuronal injury associated with closed head TBI. The known mechanisms of axonal degeneration from mechanical injury in TBI are in many ways similar to degenerative disease, ischemia, and spinal cord injury. It is therefore possible that the mechanisms that result in axonal degeneration in isolated cortical axons after in vitro stretch injury are shared with injured axons from different neuronal types. Dorsal root ganglia neurons (DRGN) are another neuronal source that may overcome some current limitations including remaining healthy in culture for long periods of time, ability to be isolated from adult sources, and myelinated in vitro. Methods: The current study sought to characterize the differential responses between cortical and DRGN axons to mechanical stretch injury associated with TBI. Using an in vitro model of traumatic axonal stretch injury, cortical and DRGN neurons were injured at a moderate (40% strain) and severe stretch (60% strain) and acute alterations in axonal morphology and calcium homeostasis were measured. Results: DRGN and cortical axons immediately form undulations in response to severe injury, experience similar elongation and recovery within 20 min after the initial injury, and had a similar pattern of degeneration over the first 24 h after injury. Additionally, both types of axons experienced comparable degrees of calcium influx after both moderate and severe injury that was prevented through pre-treatment with tetrodotoxin in cortical neurons and lidocaine in DRGNs. Similar to cortical axons, stretch injury also causes calcium activated proteolysis of sodium channel in DRGN axons that is prevented by treatment with lidocaine or protease inhibitors. Discussion: These findings suggest that DRGN axons share the early response of cortical neurons to a rapid stretch injury and the associated secondary injury mechanisms. The utility of a DRGN in vitro TBI model may allow future studies to explore TBI injury progression in myelinated and adult neurons.

6.
J Neurosci ; 30(17): 6122-31, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20427670

RESUMEN

Members of the neuregulin-1 (Nrg1) growth factor family play important roles during Schwann cell development. Recently, it has been shown that the membrane-bound type III isoform is required for Schwann cell myelination. Interestingly, however, Nrg1 type II, a soluble isoform, inhibits the process. The mechanisms underlying these isoform-specific effects are unknown. It is possible that myelination requires juxtacrine Nrg1 signaling provided by the membrane-bound isoform, whereas paracrine stimulation by soluble Nrg1 inhibits the process. To investigate this, we asked whether Nrg1 type III provided in a paracrine manner would promote or inhibit myelination. We found that soluble Nrg1 type III enhanced myelination in Schwann cell-neuron cocultures. It improved myelination of Nrg1 type III(+/-) neurons and induced myelination on normally nonmyelinated sympathetic neurons. However, soluble Nrg1 type III failed to induce myelination on Nrg1 type III(-/-) neurons. To our surprise, low concentrations of Nrg1 type II also elicited a similar promyelinating effect. At high doses, however, both type II and III isoforms inhibited myelination and increased c-Jun expression in a manner dependent on Mek/Erk (mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) activation. These results indicate that paracrine Nrg1 signaling provides concentration-dependent bifunctional effects on Schwann cell myelination. Furthermore, our studies suggest that there may be two distinct steps in Schwann cell myelination: an initial phase dependent on juxtacrine Nrg1 signaling and a later phase that can be promoted by paracrine stimulation.


Asunto(s)
Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Células de Schwann/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/enzimología , Ganglios Espinales/metabolismo , Genes jun , Humanos , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Vaina de Mielina/enzimología , Neurregulina-1/genética , Neuronas/enzimología , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Células de Schwann/enzimología , Nervio Ciático/enzimología , Nervio Ciático/metabolismo
7.
J Neurosci ; 29(19): 6367-78, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19439614

RESUMEN

Although both extrinsic and intrinsic factors have been identified that orchestrate the differentiation and maturation of oligodendrocytes, less is known about the intracellular signaling pathways that control the overall commitment to differentiate. Here, we provide evidence that activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. Specifically, mTOR regulates oligodendrocyte differentiation at the late progenitor to immature oligodendrocyte transition as assessed by the expression of stage specific antigens and myelin proteins including MBP and PLP. Furthermore, phosphorylation of mTOR on Ser 2448 correlates with myelination in the subcortical white matter of the developing brain. We demonstrate that mTOR exerts its effects on oligodendrocyte differentiation through two distinct signaling complexes, mTORC1 and mTORC2, defined by the presence of the adaptor proteins raptor and rictor, respectively. Disrupting mTOR complex formation via siRNA mediated knockdown of raptor or rictor significantly reduced myelin protein expression in vitro. However, mTORC2 alone controlled myelin gene expression at the mRNA level, whereas mTORC1 influenced MBP expression via an alternative mechanism. In addition, investigation of mTORC1 and mTORC2 targets revealed differential phosphorylation during oligodendrocyte differentiation. In OPC-DRG cocultures, inhibiting mTOR potently abrogated oligodendrocyte differentiation and reduced numbers of myelin segments. These data support the hypothesis that mTOR regulates commitment to oligodendrocyte differentiation before myelination.


Asunto(s)
Diferenciación Celular , Oligodendroglía/citología , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Expresión Génica , Técnicas de Silenciamiento del Gen , Proteína Básica de Mielina , Proteínas de la Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/fisiología , Fosforilación , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Células Madre/citología , Células Madre/fisiología , Serina-Treonina Quinasas TOR
8.
Mol Cell Neurosci ; 38(1): 80-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18374600

RESUMEN

Peripheral nerve injury is followed by a wave of Schwann cell proliferation in the distal nerve stumps. To resolve the role of Schwann cell proliferation during functional recovery of the injured nerves, we used a mouse model in which injury-induced Schwann cell mitotic response is ablated via targeted disruption of cyclin D1. In the absence of distal Schwann cell proliferation, axonal regeneration and myelination occur normally in the mutant mice and functional recovery of injured nerves is achieved. This is enabled by pre-existing Schwann cells in the distal stump that persist but do not divide. On the other hand, in the wild type littermates, newly generated Schwann cells of injured nerves are culled by apoptosis. As a result, distal Schwann cell numbers in wild type and cyclin D1 null mice converge to equivalence in regenerated nerves. Therefore, distal Schwann cell proliferation is not required for functional recovery of injured nerves.


Asunto(s)
Apoptosis/fisiología , Axones/fisiología , Proliferación Celular , Regeneración Nerviosa/fisiología , Células de Schwann/fisiología , Degeneración Walleriana/patología , Animales , Apoptosis/genética , Axones/patología , Ciclina D , Ciclinas/deficiencia , Ciclinas/genética , Ratones , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Regeneración Nerviosa/genética , Nervios Periféricos/citología , Nervios Periféricos/patología , Nervios Periféricos/fisiología , Células de Schwann/citología , Degeneración Walleriana/genética
9.
Glia ; 56(15): 1637-47, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18551621

RESUMEN

Expression of E-cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E-cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo, the appearance of E-cadherin in postnatal Schwann cell is accompanied by the disappearance of N-cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron-Schwann cell co-culture system, here we show that E-cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP-dependent protein kinase A (cAMP-PKA) activation in the Schwann cell: (1) inhibition of cAMP-PKA blocks axon-induced E-cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E-cadherin expression. In addition, cAMP-dependent E-cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP-induced E-cadherin expression is accompanied by suppression of N-cadherin expression. Therefore, we propose that axon-dependent activation of cAMP-PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells.


Asunto(s)
Cadherinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Axones/metabolismo , Cadherinas/genética , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática/fisiología , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Nervios Periféricos/citología , Ratas , Ratas Sprague-Dawley , Células de Schwann/citología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
10.
Methods Mol Biol ; 1739: 39-48, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546699

RESUMEN

The most widely used method (Brockes' method) for preparing primary Schwann cell culture uses neonatal rat sciatic nerves as the primary source of Schwann cells. The procedure is relatively simple and yields a highly purified population of Schwann cells in a short period of time. The method has also been used to prepare Schwann cells from mice, however, with limitation. For example, Brockes' method is not applicable when the genotypes of mouse neonates are unknown or if the mouse mutants do not develop to term. We described a method ideal for preparing Schwann cells in a transgenic/knockout mouse study. The method uses embryonic dorsal root ganglia as the primary source of Schwann cells and allows preparing separate, highly purified Schwann cell cultures from individual mouse embryos in less than 2 weeks.


Asunto(s)
Células de Schwann/citología , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Células de Schwann/metabolismo
11.
ASN Neuro ; 9(6): 1759091417745425, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29198135

RESUMEN

Tissue inhibitor of metalloproteinase-3 (TIMP-3) inhibits the activities of various metalloproteinases including matrix metalloproteinases and ADAM family proteins. In the peripheral nervous system, ADAM17, also known as TNF-α converting enzyme (TACE), cleaves the extracellular domain of Nrg1 type III, an axonal growth factor that is essential for Schwann cell myelination. The processing by ADAM17 attenuates Nrg1 signaling and inhibits Schwann cell myelination. TIMP-3 targets ADAM17, suggesting a possibility that TIMP-3 may elicit a promyelinating function in Schwann cells by relieving ADAM17-induced myelination block. To investigate this, we used a myelinating coculture system to determine the effect of TIMP-3 on Schwann cell myelination. Treatment with TIMP-3 enhanced myelin formation in cocultures, evident by an increase in the number of myelin segments and upregulated expression of Krox20 and myelin protein. The effect of TIMP-3 was accompanied by the inhibition of ADAM17 activity and an increase in Nrg1 type III signaling in cocultures. Accordingly, the N-terminus fragment of TIMP-3, which exhibits a selective inhibitory function toward ADAM17, elicited a similar myelination-promoting effect and increased Nrg1 type III activity. TIMP-3 also enhanced laminin production in cocultures, which is likely to aid Schwann cell myelination.


Asunto(s)
Vaina de Mielina/metabolismo , Células de Schwann/efectos de los fármacos , Nervio Ciático/citología , Inhibidor Tisular de Metaloproteinasa-3/farmacología , Proteína ADAM17/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Antioxidantes , Ácido Ascórbico/farmacología , Bromodesoxiuridina/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Transferencia Resonante de Energía de Fluorescencia , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteína Básica de Mielina/metabolismo , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Ratas , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo
12.
J Neurosci ; 25(13): 3478-87, 2005 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-15800203

RESUMEN

How do myelinated axons signal to the nuclei of cells that enwrap them? The cell bodies of oligodendrocytes and Schwann cells are segregated from axons by multiple layers of bimolecular lipid leaflet and myelin proteins. Conventional signal transduction strategies would seem inadequate to the challenge without special adaptations. Wallerian degeneration provides a model to study axon-to-Schwann cell signaling in the context of nerve injury. We show a hitherto undetected rapid, but transient, activation of the receptor tyrosine kinase erbB2 in myelinating Schwann cells after sciatic nerve axotomy. Deconvolving microscopy using phosphorylation state-specific antibodies shows that erbB2 activation emanates from within the microvilli of Schwann cells, in direct contact with the axons they enwrap. To define the functional role of this transient activation, we used a small molecule antagonist of erbB2 activation (PKI166). The response of myelinating Schwann cells to axotomy is inhibited by PKI166 in vivo. Using neuron/Schwann cell cocultures prepared in compartmentalized cell culture chambers, we show that even transient activation of erbB2 is sufficient to initiate Schwann cell demyelination and that the initiating functions of erbB2 are localized to Schwann cells.


Asunto(s)
Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Degeneración Walleriana/patología , Análisis de Varianza , Animales , Axotomía/métodos , Western Blotting/métodos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo/métodos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Ganglios Espinales/patología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Glicoproteínas/metabolismo , Inmunoprecipitación/métodos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Neurregulinas/farmacología , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Pirimidinas/administración & dosificación , Pirroles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-2 , Células de Schwann/patología , Neuropatía Ciática/patología , Transducción de Señal/efectos de los fármacos , Canales de Sodio/metabolismo , Factores de Tiempo , Degeneración Walleriana/fisiopatología
13.
Methods Enzymol ; 407: 22-33, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16757311

RESUMEN

The study of peripheral nerve function in development and disease can be facilitated by the availability of cultured cells that faithfully mimic in vivo Schwann cell growth, maturation, and differentiation. We have developed a method to establish purified mouse Schwann cell culture from a single embryo at embryonic day 12.5 (E12.5) to define the abnormalities in Schwann cells caused by loss of the neurofibromatosis type 1 (Nf1) tumor suppressor protein, the RAS-GAP neurofibromin. Our method generates 2-3 x 10(6) cells/embryo highly purified (>99.5%) mouse Schwann cells in less than 2 weeks from a single E12.5 mouse embryo. Manipulation of cell medium allows purification of a Schwann-like cell population, termed Nf1-/-TXF, that resembles a tumorigenic cell in that it grows dissociated from axons and grows rapidly, yet retains expression of Schwann cell markers. We describe the preparation and characterization of both cell types.


Asunto(s)
Neurofibromina 1/fisiología , Células de Schwann/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Separación Celular , Embrión de Mamíferos/citología , Ratones , Mutación , Neurofibromina 1/genética , Fenotipo , Células de Schwann/citología
14.
Stem Cells Transl Med ; 2(8): 553-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817134

RESUMEN

Repair in the peripheral nervous system (PNS) depends upon the plasticity of the myelinating cells, Schwann cells, and their ability to dedifferentiate, direct axonal regrowth, remyelinate, and allow functional recovery. The ability of such an exquisitely specialized myelinating cell to revert to an immature dedifferentiated cell that can direct repair is remarkable, making Schwann cells one of the very few regenerative cell types in our bodies. However, the idea that the PNS always repairs after injury, in contrast to the central nervous system, is not true. Repair in patients after nerve trauma can be incredibly variable, depending on the site and type of injury, and only a relatively small number of axons may fully regrow and reinnervate their targets. Recent research has shown that it is an active process that drives Schwann cells back to an immature state after injury and that this requires activity of the p38 and extracellular-regulated kinase 1/2 mitogen-activated protein kinases, as well as the transcription factor cJun. Analysis of the events after peripheral nerve transection has shown how signaling from nerve fibroblasts forms Schwann cells into cords in the newly generated nerve bridge, via Sox2 induction, to allow the regenerating axons to cross the gap. Understanding these pathways and identifying additional mechanisms involved in these processes raises the possibility of both boosting repair after PNS trauma and even, possibly, blocking the inappropriate demyelination seen in some disorders of the peripheral nervous system.


Asunto(s)
Plasticidad Neuronal/fisiología , Sistema Nervioso Periférico/patología , Sistema Nervioso Periférico/fisiopatología , Células de Schwann/patología , Cicatrización de Heridas , Animales , Humanos , Sistema de Señalización de MAP Quinasas , Vaina de Mielina/metabolismo , Sistema Nervioso Periférico/enzimología , Células de Schwann/enzimología
15.
Nat Neurosci ; 14(4): 437-41, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21423191

RESUMEN

Schwann cell myelination is tightly regulated by timely expression of key transcriptional regulators that respond to specific environmental cues, but the molecular mechanisms underlying such a process are poorly understood. We found that the acetylation state of NF-κB, which is regulated by histone deacetylases (HDACs) 1 and 2, is critical for orchestrating the myelination program. Mice lacking both HDACs 1 and 2 (HDAC1/2) exhibited severe myelin deficiency with Schwann cell development arrested at the immature stage. NF-κB p65 became heavily acetylated in HDAC1/2 mutants, inhibiting the expression of positive regulators of myelination and inducing the expression of differentiation inhibitors. We observed that the NF-κB protein complex switched from associating with p300 to associating with HDAC1/2 as Schwann cells differentiated. NF-κB and HDAC1/2 acted in a coordinated fashion to regulate the transcriptionally linked chromatin state for Schwann cell myelination. Thus, our results reveal an HDAC-mediated developmental switch for controlling myelination in the peripheral nervous system.


Asunto(s)
Histona Desacetilasa 1/fisiología , Histona Desacetilasa 2/fisiología , FN-kappa B/metabolismo , Fibras Nerviosas Mielínicas/enzimología , Células de Schwann/enzimología , Nervio Ciático/crecimiento & desarrollo , Acetilación , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Cromatina/genética , Proteína p300 Asociada a E1A/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/ultraestructura , Ratas , Células de Schwann/patología , Células de Schwann/ultraestructura , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional/fisiología
16.
Mol Cell Pharmacol ; 2(4): 161-167, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21274416

RESUMEN

Myelination in the peripheral nervous system (PNS) is induced by close contact signaling between axons and Schwann cells. Previous studies have identified membrane-bound neuregulin-1 (Nrg1) type III, expressed on the axons, as the key instructive signal that regulates Schwann cell myelination. In our recent study, we show that recombinant soluble Nrg1 elicits a similar pro-myelinating effect on Schwann cells, albeit in a dosage-dependent manner: Nrg1 promotes myelination at low concentrations but inhibits it at high concentrations. The inhibitory effect of Nrg1 is mediated through its activation of the Ras/Raf/Erk pathway in Schwann cells, and inhibition of the pathway using a pharmacologic inhibitor restores myelination. We also show that soluble Nrg1 enhances myelination on axons that do not express sufficient amount of Nrg1 type III needed for robust myelination. These findings are significant as they suggest that combined therapies aimed at enhancing Nrg1 signaling and blocking the Ras/Raf/Erk activation may be an effective strategy for improving remyelination on adult axons, which, as shown in our recent data, express low levels of Nrg1 type III. In this report we provide an overview of our recent findings and discuss the therapeutic potential of soluble Nrg1.

17.
Exp Neurol ; 224(2): 415-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20478308

RESUMEN

Traumatic axonal injury (TAI) is the most common and important pathology of traumatic brain injury (TBI). However, little is known about potential indirect effects of TAI on dendrites. In this study, we used a well-established in vitro model of axonal stretch injury to investigate TAI-induced changes in dendrite morphology. Axons bridging two separated rat cortical neuron populations plated on a deformable substrate were used to create a zone of isolated stretch injury to axons. Following injury, we observed the formation of dendritic alterations or beading along the dendrite shaft. Dendritic beading formed within minutes after stretch then subsided over time. Pharmacological experiments revealed a sodium-dependent mechanism, while removing extracellular calcium exacerbated TAI's effect on dendrites. In addition, blocking ionotropic glutamate receptors with the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 prevented dendritic beading. These results demonstrate that axon mechanical injury directly affects dendrite morphology, highlighting an important bystander effect of TAI. The data also imply that TAI may alter dendrite structure and plasticity in vivo. An understanding of TAI's effect on dendrites is important since proper dendrite function is crucial for normal brain function and recovery after injury.


Asunto(s)
Axones/ultraestructura , Dendritas/ultraestructura , Animales , Axones/efectos de los fármacos , Lesiones Encefálicas/patología , Calcio/metabolismo , Supervivencia Celular , Células Cultivadas , Dendritas/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Espacio Extracelular/metabolismo , Neocórtex/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sodio/fisiología , Estrés Mecánico
18.
Ann N Y Acad Sci ; 883(1): 203-214, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29086925

RESUMEN

The neurofibromatosis type 1 (NF1) gene product, neurofibromin, regulates activation of the Ras intracellular signaling pathway in Schwann cells. Schwann cells purified from mouse embryos with null mutations in the Nf1 gene increase expression of the major myelin glycoprotein P0. v-Ras expression in cultured Schwann cells partially mimics loss of Nf1, suggesting a role for Ras in upregulation of P0 expression in Nf1-deficient cells. We tested whether loss of Nf1 alters the ability of Schwann cells to form myelin. No significant changes in myelin formation resulted when Nf1-deficient or v-Ras-expressing Schwann cells were cultured with normal neurons. Yet, in organotypic cultures of neurons, Schwann cells, and fibroblasts without neurofibromin, myelination was dramatically reduced. We suggest that Nf1-dependent signaling cascades in neurons and/or fibroblasts, as well as Schwann cells, are required for normal myelination.

19.
Science ; 306(5705): 2255-7, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15618518

RESUMEN

In the developing brain, transcription factors (TFs) direct the formation of a diverse array of neurons and glia. We identifed 1445 putative TFs in the mouse genome. We used in situ hybridization to map the expression of over 1000 of these TFs and TF-coregulator genes in the brains of developing mice. We found that 349 of these genes showed restricted expression patterns that were adequate to describe the anatomical organization of the brain. We provide a comprehensive inventory of murine TFs and their expression patterns in a searchable brain atlas database.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Genoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/anatomía & histología , Encéfalo/embriología , Clonación Molecular , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/embriología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Cartilla de ADN , Bases de Datos Factuales , Hipotálamo/anatomía & histología , Hipotálamo/embriología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hibridación in Situ , Mesencéfalo/anatomía & histología , Mesencéfalo/embriología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Neocórtex/anatomía & histología , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Reacción en Cadena de la Polimerasa , Rombencéfalo/anatomía & histología , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Tálamo/anatomía & histología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA