Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(50): 16478-16485, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27936742

RESUMEN

We report on the fabrication of a siloxane-encapsulated quantum dot (QD) film (QD-silox film), which exhibits stable emission intensity for over 1 month even at elevated temperature and humidity. QD-silox films are solidified via free radical addition reaction between oligosiloxane resin and ligand molecules on QDs. We prepare the QD-oligosiloxane resin by sol-gel condensation reaction of silane precursors with QDs blended in the precursor solution, forgoing ligand-exchange of QDs. The resulting QD-oligosiloxane resin remains optically clear after 40 days of storage, in contrast to other QD-containing resins which turn turbid and ultimately form sediments. QDs also disperse uniformly in the QD-silox film, whose photoluminescence (PL) quantum yield (QY) remains nearly unaltered under harsh conditions; for example, 85 °C/5% relative humidity (RH), 85 °C/85% RH, strongly acidic, and strongly basic environments for 40 days. The QD-silox film appears to remain equally emissive even after being immersed into boiling water (100 °C). Interestingly, the PL QY of the QD-silox film noticeably increases when the film is exposed to a moist environment, which opens a new, facile avenue to curing dimmed QD-containing films. Given its excellent stability, we envision that the QD-silox film is best suited in display applications, particularly as a PL-type down-conversion layer.

2.
ACS Appl Mater Interfaces ; 11(17): 15952-15959, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938501

RESUMEN

Herein, we report a siloxane-encapsulated upconversion nanoparticle hybrid composite (SE-UCNP), which exhibits excellent photoluminescence (PL) stability for over 40 days even at an elevated temperature, in high humidity, and in harsh chemicals. The SE-UCNP is synthesized through UV-induced free-radical polymerization of a sol-gel-derived UCNP-containing oligosiloxane resin (UCNP-oligosiloxane). The siloxane matrix with a random network structure by Si-O-Si bonds successfully encapsulates the UCNPs with chemical linkages between the siloxane matrix and organic ligands on UCNPs. This encapsulation results in surface passivation retaining the intrinsic fluorescent properties of UCNPs under severe conditions (e.g., 85 °C/85% relative humidity) and a wide range of pH (from 1 to 14). As an application example, we fabricate a two-color binary microbarcode based on SE-UCNP via a low-cost transfer printing process. Under near-infrared irradiation, the binary sequences in our barcode are readable enough to identify objects using a mobile phone camera. The hybridization of UCNPs with a siloxane matrix provides the capacity for highly stable UCNP-based applications in real environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA