Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(25): 16498-16506, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28608873

RESUMEN

To prevent car accidents, it is important to evaluate the thermal stability of tire rubbers, such as natural rubber (NR), butadiene rubber (BR), and styrene-butadiene rubber (SBR). Controlling the glass transition temperature (Tg) is the main factor for obtaining desirable thermal stability. Here, we developed an optimized equation for the prediction of the Tg of the various rubber systems using molecular dynamics (MD) simulations. We modeled a random copolymer system, blended monomers, and calculated the Tg of butadiene isomers in each composition. From these results, we designed the Tg contour of ternary cis-trans-vinyl butadiene and derived an equation of Tg for the ternary system. Moreover, we developed an equation to evaluate the pseudo-ternary Tg of quaternary SBR and plotted it. Our results present a novel way of predicting the Tg of ternary BR and quaternary SBR, which is critical for rational tire design with optimized thermal and mechanical stability.

2.
J Chem Phys ; 128(14): 144702, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-18412466

RESUMEN

The basin-hopping Monte Carlo algorithm was modified to more effectively determine a global minimum structure in pure and binary metallic nanoclusters. For a pure metallic Ag55 nanocluster, the newly developed quadratic basin-hopping Monte Carlo algorithm is 3.8 times more efficient than the standard basin-hopping Monte Carlo algorithm. For a bimetallic Ag42Pd13 nanocluster, the new algorithm succeeds in finding the global minimum structure by 18.3% even though the standard basin-hopping Monte Carlo algorithm fails to achieve it.

3.
Proc Natl Acad Sci U S A ; 104(9): 3031-6, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17360604

RESUMEN

Nano-twinned copper exhibits an unusual combination of ultrahigh strength and high ductility, along with increased strain-rate sensitivity. We develop a mechanistic framework for predicting the rate sensitivity and elucidating the origin of ductility in terms of the interactions of dislocations with interfaces. Using atomistic reaction pathway calculations, we show that slip transfer reactions mediated by twin boundary are the rate-controlling mechanisms of plastic flow. We attribute the relatively high ductility of nano-twinned copper to the hardening of twin boundaries as they gradually lose coherency during plastic deformation. These findings provide insights into the possible means of optimizing strength and ductility through interfacial engineering.


Asunto(s)
Cobre/química , Modelos Químicos , Nanotecnología/métodos , Ensayo de Materiales , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA