Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115820, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103469

RESUMEN

Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Perfilación de la Expresión Génica , Pez Cebra , Animales , Xenopus laevis/genética , Adenosina Trifosfato , Embrión no Mamífero , Teratógenos/toxicidad
2.
Genes Dev ; 30(11): 1289-99, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298335

RESUMEN

Small cell lung cancer (SCLC) is a devastating neuroendocrine carcinoma. MYCL (L-Myc) is frequently amplified in human SCLC, but its roles in SCLC progression are poorly understood. We isolated preneoplastic neuroendocrine cells from a mouse model of SCLC and found that ectopic expression of L-Myc, c-Myc, or N-Myc conferred tumor-forming capacity. We focused on L-Myc, which promoted pre-rRNA synthesis and transcriptional programs associated with ribosomal biogenesis. Deletion of Mycl in two genetically engineered models of SCLC resulted in strong suppression of SCLC. The high degree of suppression suggested that L-Myc may constitute a therapeutic target for a broad subset of SCLC. We then used an RNA polymerase I inhibitor to target rRNA synthesis in an autochthonous Rb/p53-deleted mouse SCLC model and found significant tumor inhibition. These data reveal that activation of RNA polymerase I by L-Myc and other MYC family proteins provides an axis of vulnerability for this recalcitrant cancer.


Asunto(s)
Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa I/metabolismo , Carcinoma Pulmonar de Células Pequeñas/enzimología , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Animales Modificados Genéticamente , Benzotiazoles/farmacología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Silenciador del Gen , Neoplasias Pulmonares/fisiopatología , Ratones , Naftiridinas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa I/antagonistas & inhibidores , Ribosomas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/fisiopatología , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas
3.
Nat Chem Biol ; 16(2): 170-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932721

RESUMEN

C1 domains are lipid-binding modules that regulate membrane activation of kinases, nucleotide exchange factors and other C1-containing proteins to trigger signal transduction. Despite annotation of typical C1 domains as diacylglycerol (DAG) and phorbol ester sensors, the function of atypical counterparts remains ill-defined. Here, we assign a key role for atypical C1 domains in mediating DAG fatty acyl specificity of diacylglycerol kinases (DGKs) in live cells. Activity-based proteomics mapped C1 probe binding as a principal differentiator of type 1 DGK active sites that combined with global metabolomics revealed a role for C1s in lipid substrate recognition. Protein engineering by C1 domain swapping demonstrated that exchange of typical and atypical C1s is functionally tolerated and can directly program DAG fatty acyl specificity of type 1 DGKs. Collectively, we describe a protein engineering strategy for studying metabolic specificity of lipid kinases to assign a role for atypical C1 domains in cell metabolism.


Asunto(s)
Diacilglicerol Quinasa/química , Diacilglicerol Quinasa/metabolismo , Ingeniería de Proteínas/métodos , Animales , Dominio Catalítico , Cromatografía Liquida , Diacilglicerol Quinasa/genética , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Metabolómica/métodos , Sondas Moleculares/química , Ácidos Fosfatidicos/metabolismo , Dominios Proteicos , Proteómica/métodos , Ratas , Especificidad por Sustrato , Espectrometría de Masas en Tándem
4.
Nucleic Acids Res ; 47(4): 1692-1705, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30535125

RESUMEN

Posttranslational modifications of the Forkhead family transcription factor, FOXO1, have been known to have important regulatory implications in its diverse activities. Several types of modifications of FOXO1, including acetylation, phosphorylation, and ubiquitination, have been reported. However, lysine methylation of FOXO1 has not yet been identified. Here, we reported that FOXO1 is methylated by G9a at K273 residue in vitro and in vivo. Methylation of FOXO1 by G9a increased interaction between FOXO1 and a specific E3 ligase, SKP2, and decreased FOXO1 protein stability. In addition, G9a expression was increased by insulin and resulted in insulin-mediated FOXO1 degradation by K273 methylation. Tissue array analysis indicated that G9a was overexpressed and FOXO1 levels decreased in human colon cancer. Cell proliferation assays revealed that G9a-mediated FOXO1 methylation increased colon cancer cell proliferation. Fluorescence-activated cell sorting (FACS) analysis indicated that apoptosis rates were higher in the presence of FOXO1 than in FOXO1 knock-out cells. Furthermore, we found that G9a protein levels were elevated and FOXO1 protein levels were decreased in human colon cancer patients tissue samples. Here, we report that G9a specific inhibitor, BIX-01294, can regulate cell proliferation and apoptosis by inhibiting G9a-mediated FOXO1 methylation.


Asunto(s)
Neoplasias del Colon/genética , Proteína Forkhead Box O1/genética , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Apoptosis/genética , Azepinas/farmacología , Sistemas CRISPR-Cas/genética , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Metilación de ADN/genética , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HCT116 , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Masculino , Quinazolinas/farmacología , Análisis de Matrices Tisulares , Ubiquitinación/genética
5.
Nucleic Acids Res ; 47(1): 184-196, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30357346

RESUMEN

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Roturas del ADN de Doble Cadena , Metilación de ADN/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Daño del ADN/genética , Reparación del ADN/genética , Heterocromatina/genética , Humanos , Fosforilación , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica/genética , Fase S/genética , Ubiquitina-Proteína Ligasas
6.
FASEB J ; 32(10): 5737-5750, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29763382

RESUMEN

The methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominent in actively transcribed regions of the genome; however, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B, also known as FBXL10 and a member of the Jumonji C family of proteins known for its histone H3K36 demethylase activity, is a di- and trimethyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, which indicates that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase sirtuin-1 (SIRT1) from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.-Kang, J.-Y., Kim, J.-Y., Kim, K.-B., Park, J. W., Cho, H., Hahm, J. Y., Chae, Y.-C., Kim, D., Kook, H., Rhee, S., Ha, N.-C., Seo, S.-B. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing.


Asunto(s)
Cromatina/metabolismo , Proteínas F-Box/metabolismo , Silenciador del Gen , Proteínas de Homeodominio/biosíntesis , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/biosíntesis , Sirtuina 1/metabolismo , Transcripción Genética , Cromatina/genética , Proteínas F-Box/genética , Proteínas de Homeodominio/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células K562 , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Sirtuina 1/genética
7.
Nucleic Acids Res ; 43(7): 3509-23, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765655

RESUMEN

Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Metilasas de Modificación del ADN/metabolismo , Regulación de la Expresión Génica , Leucemia/patología , Transcripción Genética , Línea Celular , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Leucemia/genética , Ubiquitina-Proteína Ligasas
8.
Biochem Biophys Res Commun ; 469(1): 22-28, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26607113

RESUMEN

Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.


Asunto(s)
Aurora Quinasa A/genética , Código de Histonas/genética , Histonas/genética , Neoplasias Experimentales/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Células HL-60 , Humanos , Fosforilación , Transcripción Genética/genética
9.
Cell Mol Life Sci ; 71(14): 2731-45, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24305947

RESUMEN

DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iß, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iß interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iß and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iß inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iß expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iß interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iß dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.


Asunto(s)
Antígenos Nucleares/fisiología , Daño del ADN , Reparación del ADN por Unión de Extremidades/fisiología , Proteínas de Unión al ADN/fisiología , Chaperonas de Histonas/fisiología , Factores de Transcripción/fisiología , Acetilación , Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Autoantígeno Ku , Modelos Genéticos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo
10.
Cell Rep ; 43(6): 114286, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796854

RESUMEN

Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Plasticidad de la Célula , Neoplasias Pulmonares , Células Neuroendocrinas , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Ratones , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
11.
Dev Reprod ; 27(1): 1-7, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38075442

RESUMEN

Small-cell lung cancer (SCLC) continues to be the deadliest of all lung cancer types. Its high mortality is largely attributed to the unchangeable development of resistance to standard chemo/radiotherapies, which have remained invariable for the past 30 years, underlining the need for new therapeutic approaches. Recent studies of SCLC genome revealed a large number of somatic alterations and identified remarkable heterogeneity of the frequent mutations except for the loss of both RB and P53 tumor suppressor genes (TSGs). Identifying the somatic alterations scattered throughout the SCLC genome will help to define the underlying mechanism of the disease and pave the way for the discovery of therapeutic vulnerabilities associated with genomic alterations. The new technique made it possible to determine the underlying mechanism for the discovery of therapeutic targets. To these ends, the techniques have been focused on understanding the molecular determinants of SCLC.

12.
Comput Struct Biotechnol J ; 21: 1843-1850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915383

RESUMEN

The budding yeast Saccharomyces cerevisiae is a well-characterized and popular model system for investigating histone modifications and the inheritance of chromatin states. The data obtained from this model organism have provided essential and critical information for understanding the complexity of epigenetic interactions and regulation in eukaryotes. Recent advances in biotechnology have facilitated the detection and quantitation of protein post-translational modification (PTM), including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, and acylation, and led to the identification of several novel modification sites in histones. Determining the cellular function of these new histone markers is essential for understanding epigenetic mechanisms and their impact on various biological processes. In this review, we describe recent advances and current views on histone modifications and their effects on chromatin dynamics in S. cerevisiae.

13.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131761

RESUMEN

Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, lung adenocarcinoma (LUAD) cells transform into neuroendocrinal (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD, a capping protein inhibitor, is frequently inactivated in cancers. CRACD knock-out (KO) de-represses NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE plasticity is associated with cell de-differentiation and activated stemness-related pathways. The single-cell transcriptomes of LUAD patient tumors recapitulate that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with SOX2, OCT4, and NANOG pathway activation, and impaired actin remodeling. This study reveals an unexpected role of CRACD in restricting NE cell plasticity that induces cell de-differentiation, providing new insights into cell plasticity of LUAD.

14.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824957

RESUMEN

The mechanisms underlying immune evasion and immunotherapy resistance in small cell lung cancer (SCLC) remain unclear. Herein, we investigate the role of CRACD tumor suppressor in SCLC. We found that CRACD is frequently inactivated in SCLC, and Cracd knockout (KO) significantly accelerates SCLC development driven by loss of Rb1, Trp53, and Rbl2. Notably, the Cracd-deficient SCLC tumors display CD8+ T cell depletion and suppression of antigen presentation pathway. Mechanistically, CRACD loss silences the MHC-I pathway through EZH2. EZH2 blockade is sufficient to restore the MHC-I pathway and inhibit CRACD loss-associated SCLC tumorigenesis. Unsupervised single-cell transcriptomic analysis identifies SCLC patient tumors with concomitant inactivation of CRACD, impairment of tumor antigen presentation, and downregulation of EZH2 target genes. Our findings define CRACD loss as a new molecular signature associated with immune evasion of SCLC cells and proposed EZH2 blockade as a viable option for CRACD-negative SCLC treatment.

15.
J Biol Chem ; 286(40): 34733-42, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21832073

RESUMEN

Histone lysine methylation, as one of the most important factors in transcriptional regulation, is associated with a various physiological conditions. Using a bioinformatics search, we identified and subsequently cloned mouse SET domain containing 3 (SETD3) with SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) and Rubis-subs-bind domains. SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation activity. SETD3 is expressed abundantly in muscular tissues and, when overexpressed, activates transcription of muscle-related genes, myogenin, muscle creatine kinase (MCK), and myogenic factor 6 (Myf6), thereby inducing muscle cell differentiation. Conversely, knockdown of SETD3 by shRNA significantly retards muscle cell differentiation. In this study, SETD3 was recruited to the myogenin gene promoter along with MyoD where it activated transcription. Together, these data indicate that SETD3 is a H3K4/K36 methyltransferase and plays an important role in the transcriptional regulation of muscle cell differentiation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/fisiología , Músculos/metabolismo , Animales , Diferenciación Celular , Cromatina/química , Biología Computacional/métodos , Regulación de la Expresión Génica , Histona Metiltransferasas , Histonas/química , Ratones , Miogenina/química , Plásmidos/metabolismo , Conformación Proteica , Ratas , Transcripción Genética , Transfección
16.
Exp Mol Med ; 54(12): 2118-2127, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509828

RESUMEN

Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Pulmonares/metabolismo , Mutación , Transición Epitelial-Mesenquimal/genética , Cromatina/genética
17.
Cell Rep ; 41(11): 111818, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516772

RESUMEN

Oncogenic KRas activates mitochondrial fission through Erk-mediated phosphorylation of the mitochondrial fission GTPase Drp1. Drp1 deletion inhibits tumorigenesis of KRas-driven pancreatic cancer, but the role of mitochondrial dynamics in other Ras-driven malignancies is poorly defined. Here we show that in vitro and in vivo growth of KRas-driven lung adenocarcinoma is unaffected by deletion of Drp1 but is inhibited by deletion of Opa1, the GTPase that regulates inner membrane fusion and proper cristae morphology. Mechanistically, Opa1 knockout disrupts cristae morphology and inhibits electron transport chain (ETC) assembly and activity, which inhibits tumor cell proliferation through loss of NAD+ regeneration. Simultaneous inactivation of Drp1 and Opa1 restores cristae morphology, ETC activity, and cell proliferation indicating that mitochondrial fission activity drives ETC dysfunction induced by Opa1 knockout. Our results support a model in which mitochondrial fission events disrupt cristae structure, and tumor cells with hyperactive fission activity require Opa1 activity to maintain ETC function.


Asunto(s)
Adenocarcinoma del Pulmón , NAD , Humanos , NAD/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Membranas Mitocondriales/metabolismo , Dinámicas Mitocondriales , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinaminas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
18.
Sci Adv ; 8(7): eabl4618, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171684

RESUMEN

EP300, a transcription coactivator important in proliferation and differentiation, is frequently mutated in diverse cancer types, including small cell lung cancer (SCLC). While these mutations are thought to result in loss of EP300 function, the impact on tumorigenesis remains largely unknown. Here, we demonstrate that EP300 mutants lacking acetyltransferase domain accelerate tumor development in mouse models of SCLC. However, unexpectedly, complete Ep300 knockout suppresses SCLC development and proliferation. Dissection of EP300 domains identified kinase inducible domain-interacting (KIX) domain, specifically its interaction with transcription factors including MYB, as the determinant of protumorigenic activity. Ala627 in EP300 KIX results in a higher protein-binding affinity than Asp647 at the equivalent position in CREBBP KIX, underlying the selectivity of KIX-binding partners for EP300. Blockade of KIX-mediated interactions inhibits SCLC development in mice and cell growth. This study unravels domain-specific roles for EP300 in SCLC and unique vulnerability of the EP300 KIX domain for therapeutic intervention.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Proteína p300 Asociada a E1A , Neoplasias Pulmonares/genética , Ratones , Unión Proteica , Carcinoma Pulmonar de Células Pequeñas/genética , Factores de Transcripción/metabolismo
19.
Cancer Res ; 82(22): 4219-4233, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36102736

RESUMEN

WNT signaling represents an attractive target for cancer therapy due to its widespread oncogenic role. However, the molecular players involved in WNT signaling and the impact of their perturbation remain unknown for numerous recalcitrant cancers. Here, we characterize WNT pathway activity in small cell lung cancer (SCLC) and determine the functional role of WNT signaling using genetically engineered mouse models. ß-Catenin, a master mediator of canonical WNT signaling, was dispensable for SCLC development, and its transcriptional program was largely silenced during tumor development. Conversely, WNT5A, a ligand for ß-catenin-independent noncanonical WNT pathways, promoted neoplastic transformation and SCLC cell proliferation, whereas WNT5A deficiency inhibited SCLC development. Loss of p130 in SCLC cells induced expression of WNT5A, which selectively increased Rhoa transcription and activated RHOA protein to drive SCLC. Rhoa knockout suppressed SCLC development in vivo, and chemical perturbation of RHOA selectively inhibited SCLC cell proliferation. These findings suggest a novel requirement for the WNT5A-RHOA axis in SCLC, providing critical insights for the development of novel therapeutic strategies for this recalcitrant cancer. This study also sheds light on the heterogeneity of WNT signaling in cancer and the molecular determinants of its cell-type specificity. SIGNIFICANCE: The p130-WNT5A-RHOA pathway drives SCLC progression and is a potential target for the development of therapeutic interventions and biomarkers to improve patient treatment.


Asunto(s)
Carcinogénesis , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Proteína Wnt-5a , Proteína de Unión al GTP rhoA , Animales , Ratones , beta Catenina/metabolismo , Carcinogénesis/genética , Neoplasias Pulmonares/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Vía de Señalización Wnt , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Terapia Molecular Dirigida
20.
Biosci Biotechnol Biochem ; 75(2): 289-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21307598

RESUMEN

Post-translational modifications of histones have been demonstrated to play important roles in the regulation of chromatin structure and transcriptional regulation. In histone modification, methylated lysine has an important role in transcriptional regulation. The evolutionarily conserved SET domain was first identified in Drosophila proteins: Suppressor of variegation (Su(var)3-9), Enhancer of zeste (E(z)), and Trithorax. SET domain-containing proteins have histone methyltransferase (HMTase) activity via the SET domain. Using a bioinformatics approach, we identified and cloned zebrafish setd3 containing SET and Rubis-subs-bind domains. In this study, we report that setd3 had lysine specificity toward histone H3K36. Methylation of histone H3K36 is known as one of the transcriptional activation markers. It transiently transfected setd3 activated general transcription in reporter assays. Overexpression of setd3 decreased cell viability and activated caspase-3, indicating possible roles in apoptotic cell death and cell cycle regulation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Secuencia de Aminoácidos , Animales , Caspasa 3/metabolismo , Supervivencia Celular , Secuencia Conservada , Activación Enzimática , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Activación Transcripcional , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA