Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.951
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244548

RESUMEN

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol Quinasa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinasa/metabolismo , NADPH Oxidasas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosforilación , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
2.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192618

RESUMEN

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Asunto(s)
Arabidopsis , Inmunidad de la Planta , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Reconocimiento de Patrones , Transducción de Señal
3.
Cell ; 163(6): 1500-14, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638076

RESUMEN

Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.


Asunto(s)
Imagen Molecular/métodos , Conservación de Tejido/métodos , Algoritmos , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Mielínicas/química , Proteómica , Sustancias Reductoras , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Mol Cell ; 81(2): 398-407.e4, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340489

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Treonina-ARNt Ligasa/genética , Treonina/metabolismo , Regulación de la Expresión Génica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Treonina-ARNt Ligasa/antagonistas & inhibidores , Treonina-ARNt Ligasa/metabolismo
5.
Mol Cell ; 81(6): 1187-1199.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33581076

RESUMEN

Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-ß production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-ß induction, prompting a negative feedback regulatory mechanism that represses IFN-ß expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.


Asunto(s)
Factor 4E Eucariótico de Iniciación/inmunología , Inmunidad Innata , MicroARNs/inmunología , Biosíntesis de Proteínas/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Animales , Factor 4E Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/inmunología , Ratones , Ratones Transgénicos , MicroARNs/genética , Infecciones por Virus ARN/genética , Virus ARN/genética
6.
Cell ; 153(4): 797-811, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663779

RESUMEN

All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.


Asunto(s)
Drosophila/inmunología , Drosophila/microbiología , Inmunidad Mucosa , Pectobacterium carotovorum/fisiología , Simbiosis , Uracilo/metabolismo , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Homeostasis , Humanos , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
7.
Nature ; 603(7902): 631-636, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322249

RESUMEN

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

8.
Nat Rev Neurosci ; 23(3): 135-156, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34983992

RESUMEN

Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.


Asunto(s)
Regulación del Apetito , Ingestión de Alimentos , Vías Aferentes/fisiología , Regulación del Apetito/fisiología , Tracto Gastrointestinal , Humanos , Estómago/fisiología
9.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843187

RESUMEN

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Asunto(s)
Diferenciación Celular , Lupus Eritematoso Sistémico , Osteopontina , Factores de Transcripción , Animales , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Osteopontina/metabolismo , Osteopontina/genética , Ratones , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Femenino , Modelos Animales de Enfermedad , Ratones Noqueados
10.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830107

RESUMEN

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Asunto(s)
Receptor alfa de Estrógeno , Estrógenos , Simulación de Dinámica Molecular , Multimerización de Proteína , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/química , Regulación Alostérica , Humanos , Ligandos , Estrógenos/metabolismo , Estrógenos/química , Sitios de Unión , Unión Proteica , Conformación Proteica
11.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37769355

RESUMEN

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Miocitos Cardíacos/metabolismo , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Heterocigoto , Mutación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
12.
Nature ; 580(7803): 376-380, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296182

RESUMEN

Mechanosensory feedback from the digestive tract to the brain is critical for limiting excessive food and water intake, but the underlying gut-brain communication pathways and mechanisms remain poorly understood1-12. Here we show that, in mice, neurons in the parabrachial nucleus that express the prodynorphin gene (hereafter, PBPdyn neurons) monitor the intake of both fluids and solids, using mechanosensory signals that arise from the upper digestive tract. Most individual PBPdyn neurons are activated by ingestion as well as the stimulation of the mouth and stomach, which indicates the representation of integrated sensory signals across distinct parts of the digestive tract. PBPdyn neurons are anatomically connected to the digestive periphery via cranial and spinal pathways; we show that, among these pathways, the vagus nerve conveys stomach-distension signals to PBPdyn neurons. Upon receipt of these signals, these neurons produce aversive and sustained appetite-suppressing signals, which discourages the initiation of feeding and drinking (fully recapitulating the symptoms of gastric distension) in part via signalling to the paraventricular hypothalamus. By contrast, inhibiting the same population of PBPdyn neurons induces overconsumption only if a drive for ingestion exists, which confirms that these neurons mediate negative feedback signalling. Our findings reveal a neural mechanism that underlies the mechanosensory monitoring of ingestion and negative feedback control of intake behaviours upon distension of the digestive tract.


Asunto(s)
Ingestión de Alimentos , Retroalimentación , Neuronas/fisiología , Animales , Encefalinas/genética , Encefalinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Tracto Gastrointestinal Superior/fisiología
13.
Proc Natl Acad Sci U S A ; 120(1): e2211442120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574693

RESUMEN

In this study, an aqueous nonlinear synaptic element showing plasticity behavior is developed, which is based on the chemical processes in an ionic diode. The device is simple, fully ionic, and easily configurable, requiring only two terminals-for input and output-similar to biological synapses. The key processes realizing the plasticity features are chemical precipitation and dissolution, which occur at forward- or reverse-biased ionic diode junctions in appropriate reservoir electrolytes. Given that the precipitate acts as a physical barrier in the circuit, the above processes change the diode conductivity, which can be interpreted as adjusting "synaptic weight" of the system. By varying the operating conditions, we first demonstrate the four types of plasticity that can be found in biological system: long-term potentiation/depression and short-term potentiation/depression. The plasticity of the proposed iontronic device has characteristics similar to those of neural synapses. To demonstrate its potential use in comparatively complex information processing, we develop a precipitation-based iontronic synapse (PIS) capable of both potentiation and depression. Finally, we show that the postsynaptic signals from the multiple excitatory or inhibitory PISs can be integrated into the total "dendritic" current, which is a function of time and input history, as in actual hippocampal neural circuits.


Asunto(s)
Hidrogeles , Plasticidad Neuronal , Solubilidad , Potenciación a Largo Plazo , Sinapsis , Iones , Precipitación Química
14.
Proc Natl Acad Sci U S A ; 120(25): e2300008120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307456

RESUMEN

mRNA translation initiation plays a critical role in learning and memory. The eIF4F complex, composed of the cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffolding protein eIF4G, is a pivotal factor in the mRNA translation initiation process. eIF4G1, the major paralogue of the three eIF4G family members, is indispensable for development, but its function in learning and memory is unknown. To study the role of eIF4G1 in cognition, we used an eIF4G1 haploinsufficient (eIF4G1-1D) mouse model. The axonal arborization of eIF4G1-1D primary hippocampal neurons was significantly disrupted, and the mice displayed impairment in hippocampus-dependent learning and memory. Translatome analysis showed that the translation of mRNAs encoding proteins of the mitochondrial oxidative phosphorylation (OXPHOS) system was decreased in the eIF4G1-1D brain, and OXPHOS was decreased in eIF4G1-silenced cells. Thus, eIF4G1-mediated mRNA translation is crucial for optimal cognitive function, which is dependent on OXPHOS and neuronal morphogenesis.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Fosforilación Oxidativa , Animales , Ratones , ARN Mensajero , Iniciación de la Cadena Peptídica Traduccional , Morfogénesis , ADN Helicasas
15.
Proc Natl Acad Sci U S A ; 120(12): e2220649120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920925

RESUMEN

Subthreshold depolarization enhances neurotransmitter release evoked by action potentials and plays a key role in modulating synaptic transmission by combining analog and digital signals. This process is known to be Ca2+ dependent. However, the underlying mechanism of how small changes in basal Ca2+ caused by subthreshold depolarization can regulate transmitter release triggered by a large increase in local Ca2+ is not well understood. This study aimed to investigate the source and signaling mechanisms of Ca2+ that couple subthreshold depolarization with the enhancement of glutamate release in hippocampal cultures and CA3 pyramidal neurons. Subthreshold depolarization increased presynaptic Ca2+ levels, the frequency of spontaneous release, and the amplitude of evoked release, all of which were abolished by blocking L-type Ca2+ channels. A high concentration of intracellular Ca2+ buffer or blockade of calmodulin abolished depolarization-induced increases in transmitter release. Estimation of the readily releasable pool size using hypertonic sucrose showed depolarization-induced increases in readily releasable pool size, and this increase was abolished by the blockade of calmodulin. Our results provide mechanistic insights into the modulation of transmitter release by subthreshold potential change and highlight the role of L-type Ca2+ channels in coupling subthreshold depolarization to the activation of Ca2+-dependent signaling molecules that regulate transmitter release.


Asunto(s)
Canales de Calcio Tipo L , Calcio , Potenciales Evocados , Ácido Glutámico , Potenciales de la Membrana , Canales de Calcio Tipo L/metabolismo , Ácido Glutámico/metabolismo , Calmodulina/metabolismo , Calcio/metabolismo , Terminales Presinápticos/metabolismo , Neurotransmisores/metabolismo , Animales , Ratas , Células Cultivadas , Hipocampo/citología , Neuronas/metabolismo , Ratas Sprague-Dawley , Transmisión Sináptica
16.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38233217

RESUMEN

The motor cortex not only executes but also prepares movement, as motor cortical neurons exhibit preparatory activity that predicts upcoming movements. In movement preparation, animals adopt different strategies in response to uncertainties existing in nature such as the unknown timing of when a predator will attack-an environmental cue informing "go." However, how motor cortical neurons cope with such uncertainties is less understood. In this study, we aim to investigate whether and how preparatory activity is altered depending on the predictability of "go" timing. We analyze firing activities of the anterior lateral motor cortex in male mice during two auditory delayed-response tasks each with predictable or unpredictable go timing. When go timing is unpredictable, preparatory activities immediately reach and stay in a neural state capable of producing movement anytime to a sudden go cue. When go timing is predictable, preparation activity reaches the movement-producible state more gradually, to secure more accurate decisions. Surprisingly, this preparation process entails a longer reaction time. We find that as preparatory activity increases in accuracy, it takes longer for a neural state to transition from the end of preparation to the start of movement. Our results suggest that the motor cortex fine-tunes preparatory activity for more accurate movement using the predictability of go timing.


Asunto(s)
Corteza Motora , Masculino , Animales , Ratones , Corteza Motora/fisiología , Tiempo de Reacción/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología
17.
N Engl J Med ; 386(12): 1143-1154, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35320644

RESUMEN

BACKGROUND: Trastuzumab emtansine is the current standard treatment for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer whose disease progresses after treatment with a combination of anti-HER2 antibodies and a taxane. METHODS: We conducted a phase 3, multicenter, open-label, randomized trial to compare the efficacy and safety of trastuzumab deruxtecan (a HER2 antibody-drug conjugate) with those of trastuzumab emtansine in patients with HER2-positive metastatic breast cancer previously treated with trastuzumab and a taxane. The primary end point was progression-free survival (as determined by blinded independent central review); secondary end points included overall survival, objective response, and safety. RESULTS: Among 524 randomly assigned patients, the percentage of those who were alive without disease progression at 12 months was 75.8% (95% confidence interval [CI], 69.8 to 80.7) with trastuzumab deruxtecan and 34.1% (95% CI, 27.7 to 40.5) with trastuzumab emtansine (hazard ratio for progression or death from any cause, 0.28; 95% CI, 0.22 to 0.37; P<0.001). The percentage of patients who were alive at 12 months was 94.1% (95% CI, 90.3 to 96.4) with trastuzumab deruxtecan and 85.9% (95% CI, 80.9 to 89.7) with trastuzumab emtansine (hazard ratio for death, 0.55; 95% CI, 0.36 to 0.86; prespecified significance boundary not reached). An overall response (a complete or partial response) occurred in 79.7% (95% CI, 74.3 to 84.4) of the patients who received trastuzumab deruxtecan and in 34.2% (95% CI, 28.5 to 40.3) of those who received trastuzumab emtansine. The incidence of drug-related adverse events of any grade was 98.1% with trastuzumab deruxtecan and 86.6% with trastuzumab emtansine, and the incidence of drug-related adverse events of grade 3 or 4 was 45.1% and 39.8%, respectively. Adjudicated drug-related interstitial lung disease or pneumonitis occurred in 10.5% of the patients in the trastuzumab deruxtecan group and in 1.9% of those in the trastuzumab emtansine group; none of these events were of grade 4 or 5. CONCLUSIONS: Among patients with HER2-positive metastatic breast cancer previously treated with trastuzumab and a taxane, the risk of disease progression or death was lower among those who received trastuzumab deruxtecan than among those who received trastuzumab emtansine. Treatment with trastuzumab deruxtecan was associated with interstitial lung disease and pneumonitis. (Funded by Daiichi Sankyo and AstraZeneca; DESTINY-Breast03 ClinicalTrials.gov number, NCT03529110.).


Asunto(s)
Ado-Trastuzumab Emtansina/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Camptotecina/análogos & derivados , Inmunoconjugados/uso terapéutico , Trastuzumab/uso terapéutico , Ado-Trastuzumab Emtansina/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Inmunológicos/efectos adversos , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Camptotecina/efectos adversos , Camptotecina/uso terapéutico , Femenino , Humanos , Inmunoconjugados/efectos adversos , Estimación de Kaplan-Meier , Enfermedades Pulmonares Intersticiales/inducido químicamente , Persona de Mediana Edad , Neumonía/inducido químicamente , Supervivencia sin Progresión , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Trastuzumab/efectos adversos
18.
N Engl J Med ; 387(1): 9-20, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35665782

RESUMEN

BACKGROUND: Among breast cancers without human epidermal growth factor receptor 2 (HER2) amplification, overexpression, or both, a large proportion express low levels of HER2 that may be targetable. Currently available HER2-directed therapies have been ineffective in patients with these "HER2-low" cancers. METHODS: We conducted a phase 3 trial involving patients with HER2-low metastatic breast cancer who had received one or two previous lines of chemotherapy. (Low expression of HER2 was defined as a score of 1+ on immunohistochemical [IHC] analysis or as an IHC score of 2+ and negative results on in situ hybridization.) Patients were randomly assigned in a 2:1 ratio to receive trastuzumab deruxtecan or the physician's choice of chemotherapy. The primary end point was progression-free survival in the hormone receptor-positive cohort. The key secondary end points were progression-free survival among all patients and overall survival in the hormone receptor-positive cohort and among all patients. RESULTS: Of 557 patients who underwent randomization, 494 (88.7%) had hormone receptor-positive disease and 63 (11.3%) had hormone receptor-negative disease. In the hormone receptor-positive cohort, the median progression-free survival was 10.1 months in the trastuzumab deruxtecan group and 5.4 months in the physician's choice group (hazard ratio for disease progression or death, 0.51; P<0.001), and overall survival was 23.9 months and 17.5 months, respectively (hazard ratio for death, 0.64; P = 0.003). Among all patients, the median progression-free survival was 9.9 months in the trastuzumab deruxtecan group and 5.1 months in the physician's choice group (hazard ratio for disease progression or death, 0.50; P<0.001), and overall survival was 23.4 months and 16.8 months, respectively (hazard ratio for death, 0.64; P = 0.001). Adverse events of grade 3 or higher occurred in 52.6% of the patients who received trastuzumab deruxtecan and 67.4% of those who received the physician's choice of chemotherapy. Adjudicated, drug-related interstitial lung disease or pneumonitis occurred in 12.1% of the patients who received trastuzumab deruxtecan; 0.8% had grade 5 events. CONCLUSIONS: In this trial involving patients with HER2-low metastatic breast cancer, trastuzumab deruxtecan resulted in significantly longer progression-free and overall survival than the physician's choice of chemotherapy. (Funded by Daiichi Sankyo and AstraZeneca; DESTINY-Breast04 ClinicalTrials.gov number, NCT03734029.).


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias de la Mama , Receptor ErbB-2 , Trastuzumab , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/secundario , Camptotecina/análogos & derivados , Progresión de la Enfermedad , Femenino , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/uso terapéutico , Inmunohistoquímica , Receptor ErbB-2/análisis , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/genética , Trastuzumab/efectos adversos , Trastuzumab/uso terapéutico
19.
Hepatology ; 79(5): 1019-1032, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047909

RESUMEN

BACKGROUND: The administration of an appropriate empirical antibiotic treatment is essential in cirrhosis and severe bacterial infections. We aimed to investigate the predictors of clinical response of empirical antibiotic treatment in a prospective cohort of patients with cirrhosis and bacterial and fungal infections included in the International Club of Ascites "Global Study." METHODS: Patients hospitalized with cirrhosis and bacterial/fungal infection were prospectively enrolled at 46 centers. Clinical response to antibiotic treatment was defined according to changes in markers of infection/inflammation, vital signs, improvement of organ failure, and results of cultures. RESULTS: From October 2015 to September 2016, 1302 patients were included at 46 centers. A clinical response was achieved in only 61% of cases. Independent predictors of lack of clinical response to empirical treatment were C-reactive protein (OR = 1.16; 95% CI = 1.02-1.31), blood leukocyte count (OR = 1.39;95% CI = 1.09-1.77), serum albumin (OR = 0.70; 95% CI = 0.55-0.88), nosocomial infections (OR = 1.96; 95% CI = 1.20-2.38), pneumonia (OR = 1.75; 95% CI = 1.22-2.53), and ineffective treatment according to antibiotic susceptibility test (OR = 5.32; 95% CI = 3.47-8.57). Patients with a lack of clinical response to first-line antibiotic treatment had a significantly lower resolution rate of infections (55% vs. 96%; p < 0.001), a higher incidence of second infections (29% vs. 15%; p < 0.001), shock (35% vs. 7%; p < 0.001) and new organ failures (52% vs. 19 %; p < 0.001) than responders. Clinical response to empirical treatment was an independent predictor of 28-day survival ( subdistribution = 0.20; 95% CI = 0.14-0.27). CONCLUSIONS: Four out of 10 patients with cirrhosis do not respond to the first-line antibiotic therapy, leading to lower resolution of infections and higher mortality. Broader-spectrum antibiotics and strategies targeting systemic inflammation may improve prognosis in patients with a high degree of inflammation, low serum albumin levels, and severe liver impairment.


Asunto(s)
Infecciones Bacterianas , Micosis , Humanos , Estudios Prospectivos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/diagnóstico , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/epidemiología , Inflamación/tratamiento farmacológico , Micosis/complicaciones , Micosis/tratamiento farmacológico , Albúmina Sérica
20.
FASEB J ; 38(6): e23552, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38498336

RESUMEN

Sex and gender disparities in biomedical research have been emphasized to improve scientific knowledge applied for the health of both men and women. Despite sex differences in cancer incidence, prognosis, and responses to therapeutic agents, mechanistic explanations at molecular levels are far from enough. Recent studies suggested that cell sex is an important biological variable due to differences in sex chromosome gene expression and differences in events associated with developmental biology. The objective of this study was to analyze the reporting of sex of cells used in cancer research using articles published in Cancer Cell, Molecular Cancer, Journal of Hematology & Oncology, Journal for ImmunoTherapy of Cancer, and Cancer Research in 2020, and to examine whether there exists any sex bias. We found that the percentage of cells with sex notation in the article was 36.5%. Primary cells exhibited higher sex notation compared to cell lines. A higher percentage of female cells were used in cell cultures with sex notation. Also, sex-common cells omitted sex description more often compared to sex-specific cells. None of the cells isolated from embryo and esophagus reported the cell sex in the article. Our results indicate cell sex report in cancer research is limited to a small proportion of cells used in the study. These results call for acknowledging the sex of cells to increase the applicability of biomedical research discoveries.


Asunto(s)
Investigación Biomédica , Células Cultivadas , Neoplasias , Femenino , Humanos , Masculino , Publicaciones , Factores Sexuales , Sexismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA