RESUMEN
Frequent mutation of APC (90%) in advanced colorectal cancer (CRC) results in the simultaneous activation of Wnt/ß-catenin and AKT signaling pathways, and the current therapeutic limitations of the AKT inhibitors for treating CRC patients are nuclear ß-catenin-induced EMT and bypassing apoptosis. In this study, we discover that the combinatorial treatment of an AKT inhibitor and KY1022, a ß-catenin destabilizer, effectively overcomes the current limitations of API-2, an AKT inhibitor, by reducing nuclear ß-catenin. Taken together, we demonstrate that the simultaneous suppression of Wnt/ß-catenin with the AKT signaling pathways is an ideal strategy for suppressing the AKT-inhibitor-mediated metastasis and for maximizing the therapeutic effects of AKT inhibitors.
RESUMEN
Well-characterized archival formalin-fixed paraffin-embedded (FFPE) tissues are of much value for prospective biomarker discovery studies, and protocols that offer high throughput and good reproducibility are essential in proteomics. Therefore, we implemented efficient paraffin removal and protein extraction from FFPE tissues followed by an optimized two-enzyme digestion using suspension trapping (S-Trap). The protocol was then combined with TMTpro 16plex labeling and applied to lung adenocarcinoma patient samples. In total, 9585 proteins were identified, and proteins related to the clinical outcome were detected. Because acetylation is known to play a major role in cancer development, a fast on-trap acetylation protocol was developed for studying endogenous lysine acetylation, which allows identification and localization of the lysine acetylation together with quantitative comparison between samples. We demonstrated that FFPE tissues are equivalent to frozen tissues to study the degree of acetylation between patients. In summary, we present a reproducible sample preparation workflow optimized for FFPE tissues that resolves known proteomic-related challenges. We demonstrate compatibility of the S-Trap with isobaric labeling and for the first time, we prove that it is feasible to study endogenous lysine acetylation stoichiometry in FFPE tissues, contributing to better utility of the existing global tissue archives. The MS proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020157, PXD021986, and PXD021964.
Asunto(s)
Proteoma , Proteómica , Formaldehído , Humanos , Adhesión en Parafina , Estudios Prospectivos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Reproducibilidad de los Resultados , Fijación del Tejido , Flujo de TrabajoRESUMEN
In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
Asunto(s)
Melanoma/genética , Metástasis de la Neoplasia/genética , Proteómica/métodos , Adulto , Biomarcadores de Tumor/genética , Femenino , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular/métodos , Anotación de Secuencia Molecular/tendencias , Pronóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutáneas/genética , Melanoma Cutáneo MalignoRESUMEN
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Asunto(s)
Melanoma/patología , Melanoma/terapia , Investigación Biomédica Traslacional/métodos , Bancos de Muestras Biológicas/tendencias , Biomarcadores de Tumor , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Humanos , Imidazoles/farmacología , Melanoma/metabolismo , Estadificación de Neoplasias , Oximas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Piridonas/farmacología , Pirimidinonas/farmacología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Melanoma Cutáneo MalignoRESUMEN
N6-methyladenosine (m6A) RNA methylation has recently emerged as a significant co-transcriptional modification involved in regulating various RNA functions. It plays a vital function in numerous biological processes. Enzymes referred to as m6A methyltransferases, such as the methyltransferaselike (METTL) 3-METTL14-Wilms tumor 1 (WT1)-associated protein (WTAP) complex, are responsible for adding m6A modifications, while m6A demethylases, including fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), can remove m6A methylation. The functions of m6A-methylated RNA are regulated through the recognition and interaction of m6A reader proteins. Recent research has shown that m6A methylation takes place at multiple sites within hepatitis B virus (HBV) RNAs, and the location of these modifications can differentially impact the HBV infection. The addition of m6A modifications to HBV RNA can influence its stability and translation, thereby affecting viral replication and pathogenesis. Furthermore, HBV infection can also alter the m6A modification pattern of host RNA, indicating the virus's ability to manipulate host cellular processes, including m6A modification. This manipulation aids in establishing chronic infection, promoting liver disease, and contributing to pathogenesis. A comprehensive understanding of the functional roles of m6A modification during HBV infection is crucial for developing innovative approaches to combat HBV-mediated liver disease. In this review, we explore the functions of m6A modification in HBV replication and its impact on the development of liver disease.
Asunto(s)
Virus de la Hepatitis B , Hepatopatías , Humanos , Virus de la Hepatitis B/genética , Metilación de ARN , Metilación , ARN , Dioxigenasa FTO Dependiente de Alfa-CetoglutaratoRESUMEN
The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.
RESUMEN
While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.
RESUMEN
Introduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results: Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion: Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.
RESUMEN
Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a critical role in normal and pathological phenotypes, including solid tumor growth and metastasis. Accordingly, the development of new anti-angiogenic agents is considered an efficient strategy for the treatment of cancer and other human diseases linked with angiogenesis. We have identified voacangine, isolated from Voacanga africana, as a novel anti-angiogenic agent. Voacangine inhibits the proliferation of HUVECs at an IC(50) of 18 µM with no cytotoxic effects. Voacangine significantly suppressed in vitro angiogenesis, such as VEGF-induced tube formation and chemoinvasion. Moreover, the compound inhibits in vivo angiogenesis in the chorioallantoic membrane at non-toxic doses. In addition, voacangine decreased the expression levels of hypoxia inducible factor-1α and its target gene, VEGF, in a dose-dependent manner. Taken together, these results suggest that the naturally occurring compound, voacangine, is a novel anti-angiogenic compound.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Ibogaína/análogos & derivados , Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Animales , Proliferación Celular , Embrión de Pollo , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Ibogaína/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest malignancies and potentially curable only with radical surgical resection at early stages. The tumor microenvironment has been shown to be central to the development and progression of PDAC. A better understanding of how early human PDAC metabolically communicates with its environment and differs from healthy pancreas could help improve PDAC diagnosis and treatment. Here we performed deep proteomic analyses from diagnostic specimens of operable, treatment-naïve PDAC patients (n = 14), isolating four tissue compartments by laser-capture microdissection: PDAC lesions, tumor-adjacent but morphologically benign exocrine glands, and connective tissues neighboring each of these compartments. Protein and pathway levels were compared between compartments and with control pancreatic proteomes. Selected targets were studied immunohistochemically in the 14 patients and in additional tumor microarrays, and lipid deposition was assessed by nonlinear label-free imaging (n = 16). Widespread downregulation of pancreatic secretory functions was observed, which was paralleled by high cholesterol biosynthetic activity without prominent lipid storage in the neoplastic cells. Stromal compartments harbored ample blood apolipoproteins, indicating abundant microvasculature at the time of tumor removal. The features best differentiating the tumor-adjacent exocrine tissue from healthy control pancreas were defined by upregulation of proteins related to lipid transport. Importantly, histologically benign exocrine regions harbored the most significant prognostic pathways, with proteins involved in lipid transport and metabolism, such as neutral cholesteryl ester hydrolase 1, associating with shorter survival. In conclusion, this study reveals prognostic molecular changes in the exocrine tissue neighboring pancreatic cancer and identifies enhanced lipid transport and metabolism as its defining features. SIGNIFICANCE: In clinically operable pancreatic cancer, regions distant from malignant cells already display proteomic changes related to lipid transport and metabolism that affect prognosis and may be pharmacologically targeted.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteómica , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Lípidos , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
A novel natural small molecule, voacangine (Voa), has been discovered as a potent antiangiogenic compound. Notably, Voa directly binds the kinase domain of the vascular endothelial growth factor receptor 2 (VEGFR2) and thereby inhibits downstream signaling. Herein, we developed synthetic small molecules based on the unique chemical structure of Voa that directly and specifically target and modulate the kinase activity of VEGFR2. Among these Voa structure analogues, Voa analogue 19 (V19) exhibited increased antiangiogenic potency against VEGF-induced VEGFR2 phosphorylation without cytotoxic effects. Moreover, treatment with V19 resulted in significant tumor cell death in a mouse xenograft model. In conclusion, this new VEGFR2 modulator, inspired from the rigid scaffold of a natural compound, Voa, is presented as a potent candidate in the development of new antiangiogenic agents.
Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Productos Biológicos/farmacología , Desarrollo de Medicamentos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Productos Biológicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Desnudos , Fosforilación , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Melanoma in advanced stages is one of the most aggressive tumors and the deadliest of skin cancers. To date, the histopathological staging focuses on tumor thickness, and clinical staging is a major estimate of the clinical behavior of primary melanoma. Here we report on an observational study with in-depth molecular profiling at the protein level including post-translational modifications (PTMs) on eleven primary tumors from melanoma patients. Global proteomics, phosphoproteomics, and acetylomics were performed on each sample. We observed an up-regulation of key mitochondrial functions, including the mitochondrial translation machinery and the down-regulation of structural proteins involved in cell adhesion, the cytoskeleton organization, and epidermis development, which dictates the progression of the disease. Additionally, the PTM level pathways related to RNA processing and transport, as well as chromatin organization, were dysregulated in relation to the progression of melanoma. Most of the pathways dysregulated in this cohort were enriched in genes differentially expressed at the transcript level when similar groups are compared or metastasis to primary melanomas. At the genome level, we found significant differences in the mutation profiles between metastatic and primary melanomas. Our findings also highlighted sex-related differences in the molecular profiles. Remarkably, primary melanomas in women showed higher levels of antigen processing and presentation, and activation of the immune system response. Our results provide novel insights, relevant for developing personalized precision treatments for melanoma patients.
RESUMEN
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
RESUMEN
The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.
Asunto(s)
Melanoma/patología , Proteoma/metabolismo , Proteómica/métodos , Transcriptoma , Antineoplásicos/uso terapéutico , Proteínas Sanguíneas/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , Bases de Datos Factuales , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Mutación , Procesamiento Proteico-Postraduccional/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Espectrometría de Masas en TándemRESUMEN
The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.
Asunto(s)
Melanoma/patología , Proteoma/análisis , Proteómica/métodos , Neoplasias Cutáneas/patología , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Neoplasias Cutáneas/metabolismo , Espectrometría de Masas en Tándem , Adulto Joven , Melanoma Cutáneo MalignoRESUMEN
Although natural products are an important source of drugs and drug leads, identification and validation of their target proteins have proven difficult. Here, we report the development of a systematic strategy for target identification and validation employing drug affinity responsive target stability (DARTS) and mass spectrometry imaging (MSI) without modifying or labeling natural compounds. Through a validation step using curcumin, which targets aminopeptidase N (APN), we successfully standardized the systematic strategy. Using label-free voacangine, an antiangiogenic alkaloid molecule as the model natural compound, DARTS analysis revealed vascular endothelial growth factor receptor 2 (VEGFR2) as a target protein. Voacangine inhibits VEGFR2 kinase activity and its downstream signaling by binding to the kinase domain of VEGFR2, as was revealed by docking simulation. Through cell culture assays, voacangine was found to inhibit the growth of glioblastoma cells expressing high levels of VEGFR2. Specific localization of voacangine to tumor compartments in a glioblastoma xenograft mouse was revealed by MSI analysis. The overlap of histological images with the MSI signals for voacangine was intense in the tumor regions and showed colocalization of voacangine and VEGFR2 in the tumor tissues by immunofluorescence analysis of VEGFR2. The strategy employing DARTS and MSI to identify and validate the targets of a natural compound as demonstrated for voacangine in this study is expected to streamline the general approach of drug discovery and validation using other biomolecules including natural products.
Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ibogaína/análogos & derivados , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos CD13/metabolismo , Curcumina/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ibogaína/química , Ibogaína/farmacocinética , Ibogaína/farmacología , Espectrometría de Masas , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Distribución Tisular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Mitocondrias/genética , Masculino , Femenino , Persona de Mediana Edad , Metástasis de la Neoplasia/genéticaRESUMEN
In the course of searching for angiogenesis inhibitors from microorganisms, two cyclic peptides, PF1171A (1) and PF1171C (2) were isolated from the soil fungus Penicillium sp. FN070315. In the present study, we investigated the antiangiogenic efficacy and associated mechanisms of 1 and 2 in vitro using human umbilical vein endothelial cells (HUVECs). Compounds 1 and 2 inhibited the proliferation of HUVECs at concentrations not exhibiting cytotoxicity. Moreover, 1 and 2 significantly suppressed vascular endothelial growth factor (VEGF)-induced migration, invasion, proliferation and tube formation of HUVECs as well as neovascularization of the chorioallantoic membrane in developing chick embryos. We also identified an association between the antiangiogenic activity of 1 and 2 and the downregulation of both the phosphorylation of VEGF receptor 2 and the expression of hypoxia inducible factor-1α at the protein level. Taken together, these results further suggest that compounds 1 and 2 will be promising angiogenesis inhibitors.