RESUMEN
The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.
Asunto(s)
Discapacidad Intelectual , Neocórtex , Esquizofrenia , Niño , Humanos , Animales , Ratones , Anciano , Esquizofrenia/genética , Deleción Cromosómica , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genéticaRESUMEN
Recent advances in the genetics of schizophrenia (SCZ) have identified rare variants that confer high disease risk, including a 1.6 Mb deletion at chromosome 3q29 with a staggeringly large effect size (O.R. > 40). Understanding the impact of the 3q29 deletion (3q29Del) on the developing CNS may therefore lead to insights about the pathobiology of schizophrenia. To gain clues about the molecular and cellular perturbations caused by the 3q29 deletion, we interrogated transcriptomic effects in two experimental model systems with complementary advantages: isogenic human forebrain cortical organoids and isocortex from the 3q29Del mouse model. We first created isogenic lines by engineering the full 3q29Del into an induced pluripotent stem cell line from a neurotypical individual. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 months and 12 months, as well as day p7 perinatal mouse isocortex, all at single cell resolution. Differential expression analysis by genotype in each cell-type cluster revealed that more than half of the differentially expressed genes identified in mouse cortex were also differentially expressed in human cortical organoids, and strong correlations were observed in mouse-human differential gene expression across most major cell-types. We systematically filtered differentially expressed genes to identify changes occurring in both model systems. Pathway analysis on this filtered gene set implicated dysregulation of mitochondrial function and energy metabolism, although the direction of the effect was dependent on developmental timepoint. Transcriptomic changes were validated at the protein level by analysis of oxidative phosphorylation protein complexes in mouse brain tissue. Assays of mitochondrial function in human heterologous cells further confirmed robust mitochondrial dysregulation in 3q29Del cells, and these effects are partially recapitulated by ablation of the 3q29Del gene PAK2 . Taken together these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species. These results converge with data from other rare SCZ-associated variants as well as idiopathic schizophrenia, suggesting that mitochondrial dysfunction may be a significant but overlooked contributing factor to the development of psychotic disorders. This cross-species scRNA-seq analysis of the SCZ-associated 3q29 deletion reveals that this copy number variant may produce early and persistent changes in cellular metabolism that are relevant to human neurodevelopment.
RESUMEN
HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) is a conserved long non-coding RNA (lncRNA) involved in myeloid and neural differentiation that is deregulated in acute myeloid leukemia and other cancers. Previous studies focused on the nuclear unspliced HOTAIRM1 transcript, however cytoplasmic splice variants exist whose roles have remained unknown. Here, we report novel functions of HOTAIRM1 in the kidney. HOTAIRM1 transcripts are induced during renal lineage differentiation of embryonic stem cells and required for expression of specific renal differentiation genes. We show that the major HOTAIRM1 transcript in differentiated cells is the spliced cytoplasmic HM1-3 isoform and that HM1-3 is downregulated in >90% of clear cell renal cell carcinomas (ccRCCs). Knockdown of HM1-3 in renal cells deregulates hypoxia-responsive and angiogenic genes, including ANGPTL4. Furthermore, HOTAIRM1 transcripts are downregulated by hypoxia-mimetic stress and knockdown of the cytoplasmic HM1-3 isoform in normoxic cells post-transcriptionally induces Hypoxia-Inducible Factor 1α (HIF1α) protein, a key activator of ANGPTL4. Our results demonstrate the pervasive downregulation of the specific HOTAIRM1 cytoplasmic isoform HM1-3 in ccRCC and suggest possible roles of HOTAIRM1 in kidney differentiation and suppression of HIF1-dependent angiogenic pathways.