Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447178

RESUMEN

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Asunto(s)
Venenos de Escorpión/farmacología , Canal Catiónico TRPA1/metabolismo , Animales , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Escorpiones/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(29): e2305871120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428925

RESUMEN

Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.


Asunto(s)
Mordeduras y Picaduras , Mariposas Nocturnas , Toxinas Biológicas , Animales , Ratones , Transferencia de Gen Horizontal , Mariposas Nocturnas/genética , Larva/genética , Ponzoñas , Dolor , Mamíferos
3.
J Biol Chem ; 300(1): 105577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110035

RESUMEN

Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.


Asunto(s)
Hormigas , Mordeduras y Picaduras , Dolor , Péptidos , Toxinas Biológicas , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje , Animales , Hormigas/patogenicidad , Hormigas/fisiología , Mordeduras y Picaduras/complicaciones , Dolor/inducido químicamente , Dolor/complicaciones , Péptidos/química , Péptidos/farmacología , Péptidos/toxicidad , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Toxinas Biológicas/química , Toxinas Biológicas/farmacología , Toxinas Biológicas/toxicidad , Vertebrados , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Canales de Sodio Activados por Voltaje/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131940

RESUMEN

Venoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.


Asunto(s)
Venenos de Hormiga/química , Hormigas/fisiología , Hipersensibilidad a las Drogas , Factor de Crecimiento Epidérmico/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Mordeduras y Picaduras de Insectos , Ratones , Imitación Molecular
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074873

RESUMEN

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Asunto(s)
Nociceptores/efectos de los fármacos , Papio/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Canales Iónicos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Tetrodotoxina/farmacología
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33893140

RESUMEN

Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.


Asunto(s)
Venenos de Artrópodos/química , Proteínas de Insectos/química , Lepidópteros/química , Neuropéptidos/química , Dolor/genética , Animales , Venenos de Artrópodos/genética , Evolución Molecular , Proteínas de Insectos/genética , Mariposas Nocturnas/química , Neuropéptidos/genética , Péptidos/química , Péptidos/genética , Proteómica , Venenos de Araña/química , Venenos de Araña/genética , Transcriptoma/genética
7.
BMC Biol ; 21(1): 5, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36617555

RESUMEN

BACKGROUND: Eusociality is widely considered to evolve through kin selection, where the reproductive success of an individual's close relative is favored at the expense of its own. High genetic relatedness is thus considered a prerequisite for eusociality. While ants are textbook examples of eusocial animals, not all ants form colonies of closely related individuals. One such example is the ectatommine ant Rhytidoponera metallica, which predominantly forms queen-less colonies that have such a low intra-colony relatedness that they have been proposed to represent a transient, unstable form of eusociality. However, R. metallica is among the most abundant and widespread ants on the Australian continent. This apparent contradiction provides an example of how inclusive fitness may not by itself explain the maintenance of eusociality and raises the question of what other selective advantages maintain the eusocial lifestyle of this species. RESULTS: We provide a comprehensive portrait of the venom of R. metallica and show that the colony-wide venom consists of an exceptionally high diversity of functionally distinct toxins for an ant. These toxins have evolved under strong positive selection, which is normally expected to reduce genetic variance. Yet, R. metallica exhibits remarkable intra-colony variation, with workers sharing only a relatively small proportion of toxins in their venoms. This variation is not due to the presence of chemical castes, but has a genetic foundation that is at least in part explained by toxin allelic diversity. CONCLUSIONS: Taken together, our results suggest that the toxin diversity contained in R. metallica colonies may be maintained by a form of group selection that selects for colonies that can exploit more resources and defend against a wider range of predators. We propose that increased intra-colony genetic variance resulting from low kinship may itself provide a selective advantage in the form of an expanded pharmacological venom repertoire. These findings provide an example of how group selection on adaptive phenotypes may contribute to maintaining eusociality where a prerequisite for kin selection is diminished.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Ponzoñas , Australia , Reproducción , Conducta Social
8.
BMC Biol ; 21(1): 121, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226201

RESUMEN

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Genómica , Inversión Cromosómica , Cisteína , Disulfuros
9.
Proteomics ; 23(20): e2300204, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37528493

RESUMEN

Ochrogaster lunifer (Lepidoptera: Notodontidae) is an Australian processionary caterpillar with detachable urticating setae that have a defensive function. These true setae induce inflammation when they contact human skin, and equine foetal loss syndrome if they are accidentally ingested by gravid horses. We used transcriptomics and proteomics to identify proteins and peptides present in and on urticating setae, which may include toxins that contribute to inflammation and/or foetal loss syndromes. This process identified 37 putative toxins, including multiple homologues of the honeybee venom peptide secapin, and proteins with similarity to odorant binding proteins, arylphorins, and the insect immune modulator Diedel. This work identifies candidate molecules that may contribute to the adverse effects of processionary caterpillar setae on human and animal health.

10.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042220

RESUMEN

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Asunto(s)
Ponzoñas , Canales de Sodio Activados por Voltaje , Humanos , Ponzoñas/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico
11.
J Am Chem Soc ; 145(26): 14276-14287, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339504

RESUMEN

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.


Asunto(s)
Porfirinas , Animales , Ratones
12.
J Neurochem ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840383

RESUMEN

Chronic pelvic pain (CPP) is the primary symptom of endometriosis patients, but adequate treatments are lacking. Modulation of ion channels expressed by sensory nerves innervating the viscera has shown promise for the treatment of irritable bowel syndrome and overactive bladder. However, similar approaches for endometriosis-associated CPP remain underdeveloped. Here, we examined the role of the voltage-gated sodium (NaV ) channel NaV 1.7 in (i) the sensitivity of vagina-innervating sensory afferents and investigated whether (ii) NaV 1.7 inhibition reduces nociceptive signals from the vagina and (iii) ameliorates endometriosis-associated CPP. The mechanical responsiveness of vagina-innervating sensory afferents was assessed with ex vivo single-unit recording preparations. Pain evoked by vaginal distension (VD) was quantified by the visceromotor response (VMR) in vivo. In control mice, pharmacological activation of NaV 1.7 with OD1 sensitised vagina-innervating pelvic afferents to mechanical stimuli. Using a syngeneic mouse model of endometriosis, we established that endometriosis sensitised vagina-innervating pelvic afferents to mechanical stimuli. The highly selective NaV 1.7 inhibitor Tsp1a revealed that this afferent hypersensitivity occurred in a NaV 1.7-dependent manner. Moreover, in vivo intra-vaginal treatment with Tsp1a reduced the exaggerated VMRs to VD which is characteristic of mice with endometriosis. Conversely, Tsp1a did not alter ex vivo afferent mechanosensitivity nor in vivo VMRs to VD in Sham control mice. Collectively, these findings suggest that NaV 1.7 plays a crucial role in endometriosis-induced vaginal hyperalgesia. Importantly, NaV 1.7 inhibition selectively alleviated endometriosis-associated CPP without the loss of normal sensation, suggesting that selective targeting of NaV 1.7 could improve the quality of life of women with endometriosis.

13.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398368

RESUMEN

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Venenos de Araña/química , Animales , Proteínas de Artrópodos/análisis , Australia , Dípteros/efectos de los fármacos , Disulfuros , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Péptidos/genética , Filogenia , Conformación Proteica , Proteómica/métodos , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
14.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958636

RESUMEN

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Asunto(s)
Evolución Molecular , Neurotoxinas/genética , Poliaminas/química , Arañas/genética , Secuencia de Aminoácidos/genética , Animales , Australia , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Ratones , Neurotoxinas/química , Neurotoxinas/metabolismo , Péptidos/genética , Filogenia , Poliaminas/metabolismo , Conducta Sexual Animal/fisiología , Venenos de Araña/genética , Arañas/patogenicidad , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiología
15.
Heart Lung Circ ; 32(7): 852-869, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37230806

RESUMEN

Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide and the primary underlying risk factor for heart failure. Despite decades of research and clinical trials, there are no drugs currently available to prevent organ damage from acute ischaemic injuries of the heart. In order to address the increasing global burden of heart failure, drug, gene, and cell-based regeneration technologies are advancing into clinical testing. In this review we highlight the burden of disease associated with AMI and the therapeutic landscape based on market analyses. New studies revealing the role of acid-sensitive cardiac ion channels and other proton-gated ion channels in cardiac ischaemia are providing renewed interest in pre- and post-conditioning agents with novel mechanisms of action that may also have implications for gene- and cell-based therapeutics. Furthermore, we present guidelines that couple new cell technologies and data resources with traditional animal modelling pipelines to help de-risk drug candidates aimed at treating AMI. We propose that improved preclinical pipelines and increased investment in drug target identification for AMI is critical to stem the increasing global health burden of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Daño por Reperfusión Miocárdica/prevención & control , Infarto del Miocardio/tratamiento farmacológico , Corazón , Insuficiencia Cardíaca/prevención & control
16.
Circulation ; 144(12): 947-960, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34264749

RESUMEN

BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Canales Iónicos Sensibles al Ácido/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple/fisiología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Venenos de Araña/farmacología
17.
Mol Ecol ; 31(3): 866-883, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837433

RESUMEN

The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Proteómica , Anémonas de Mar/genética , Análisis de Secuencia de ARN , Transcriptoma
18.
Nature ; 534(7608): 494-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27281198

RESUMEN

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Venenos de Araña/farmacología , Estrés Mecánico , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Sensoriales/citología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Masculino , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/química , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Oocitos/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Arañas/química , Especificidad por Sustrato/efectos de los fármacos , Temperatura
19.
Cell Mol Life Sci ; 78(12): 5163-5177, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33970306

RESUMEN

Velvet ants (Hymenoptera: Mutillidae) are a family of solitary parasitoid wasps that are renowned for their painful stings. We explored the chemistry underlying the stings of mutillid wasps of the genus Dasymutilla Ashmead. Detailed analyses of the venom composition of five species revealed that they are composed primarily of peptides. We found that two kinds of mutillid venom peptide appear to be primarily responsible for the painful effects of envenomation. These same peptides also have defensive utility against invertebrates, since they were able to incapacitate and kill honeybees. Both act directly on cell membranes where they directly increase ion conductivity. The defensive venom peptides of Dasymutilla bear a striking similarity, in structure and mode of action, to those of the ant Myrmecia gulosa (Fabricius), suggesting either retention of ancestral toxins, or convergence driven by similar life histories and defensive selection pressures. Finally, we propose that other highly expressed Dasymutilla venom peptides may play a role in parasitisation, possible in delay or arrest of host development. This study represents the first detailed account of the composition and function of the venoms of the Mutillidae.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/toxicidad , Conducta Animal/efectos de los fármacos , Himenópteros/fisiología , Mordeduras y Picaduras de Insectos/inducido químicamente , Dolor/inducido químicamente , Fragmentos de Péptidos/toxicidad , Secuencia de Aminoácidos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Homología de Secuencia
20.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361863

RESUMEN

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Asunto(s)
Venenos de Araña , Arañas , Animales , Humanos , Venenos de Araña/toxicidad , Venenos de Araña/química , Árboles , Australia , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA