Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 94: 148-158, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33636311

RESUMEN

BACKGROUND: Up-regulated interleukin 6 (IL-6) signaling, immune system activation, and pronociceptive autoantibodies are characteristic of complex regional pain syndrome (CRPS). IL-6 is known to promote B cell differentiation, thus we hypothesized that IL-6 signaling plays a crucial role in the development of adaptive immune responses and nociceptive sensitization in a murine tibia fracture model of CRPS. METHODS: Mice deficient in IL-6 expression (IL-6-/-) or B cell deficient (muMT) underwent tibia fracture and 3 weeks of cast immobilization or sham injury. The deposition of IgM in fractured limbs was followed using Western blotting, and passive serum transfer to muMT fracture mice was used to detect nociception-supporting autoantibodies. Lymph nodes were assessed for hypertrophy, IL-6 expression was measured using qPCR and ELISA, and germinal center formation was evaluated using FACS and immunohistochemistry. The therapeutic effects of exogenous neutralizing anti-IL-6 antibodies were also evaluated in the CRPS fracture model. RESULTS: Functional IL-6 signaling was required for the post fracture development of nociceptive sensitization, vascular changes, and IgM immune complex deposition in the skin of injured limbs. Passive transfer of sera from wild-type, but not IL-6-/- fracture mice into muMT fracture mice caused enhanced allodynia and postural unweighting. IL-6-/- fracture mice displayed reduced popliteal lymphadenopathy after fracture. Germinal center responses were detected in the popliteal lymph nodes of wild-type, but not in IL-6-/- fracture mice. We observed that IL-6 expression was dramatically enhanced in popliteal lymph node tissue after fracture. Conversely, administration of anti-IL-6 antibodies reduced nociceptive and vascular changes after fracture and inhibited lymphadenopathy. CONCLUSIONS: Collectively, these data support the hypothesis that IL-6 signaling in the fracture limb of mice is required for germinal center formation, IgM autoantibody production and nociceptive sensitization. Anti-IL-6 therapies might, therefore, reduce pain after limb fracture or in the setting of CRPS.


Asunto(s)
Síndromes de Dolor Regional Complejo , Nocicepción , Animales , Modelos Animales de Enfermedad , Centro Germinal , Inmunoglobulina M , Masculino , Ratones , Tibia
2.
Anesth Analg ; 132(5): 1475-1485, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33646995

RESUMEN

BACKGROUND: Complex regional pain syndrome (CRPS) is a highly disabling cause of pain often precipitated by surgery or trauma to a limb. Both innate and adaptive immunological changes contribute to this syndrome. Dimethyl fumarate (DMF) works through the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and other targets to activate antioxidant systems and to suppress immune system activation. We hypothesized that DMF would reduce nociceptive, functional, and immunological changes measured in a model of CRPS. METHODS: Male C57BL/6 mice were used in the well-characterized tibial fracture model of CRPS. Some groups of mice received DMF 25 mg/kg/d orally, per os for 3 weeks after fracture versus vehicle alone. Homozygous Nrf2 null mutant mice were used as test subjects to address the need for this transcription factor for DMF activity. Allodynia was assessed using von Frey filaments and hindlimb weight-bearing data were collected. The markers of oxidative stress malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were quantified in the skin of the fractured mice using immunoassays along with the innate immune system cytokines IL-1ß and IL-6. The accumulation of IgM in the fractured limbs and lymph node hypertrophy were used as indexes of adaptive immune system activation, and the passive transfer of serum from wildtype fractured mice to B cell-deficient fractured muMT mice (mice lacking B cells and immunoglobulin) helped to assess the pronociceptive activity of humoral factors. RESULTS: We observed that oral DMF administration strongly prevented nociceptive sensitization and reduced uneven hindlimb weight bearing after fracture. DMF was also very effective in reducing the accumulation of markers of oxidative stress, activation of innate immune mediator production, lymph node hypertrophy, and the accumulation of IgM in fractured limbs. The sera of fractured vehicle-treated but not DMF-treated mice conferred pronociceptive activity to recipient mice. Unexpectedly, the effects of DMF were largely unchanged in the Nrf2 null mutant mice. CONCLUSIONS: Oxidative stress and immune system activation are robust after hindlimb fracture in mice. DMF strongly reduces activation of those systems, and the Nrf2 transcription factor is not required. DMF or drugs working through similar mechanisms might provide effective therapy for CRPS or other conditions where oxidative stress causes immune system activation.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Analgésicos/farmacología , Antioxidantes/farmacología , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Dimetilfumarato/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunosupresores/farmacología , Nocicepción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Síndromes de Dolor Regional Complejo/inmunología , Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fracturas de la Tibia/inmunología , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/fisiopatología
3.
Brain Behav Immun ; 88: 725-734, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32413559

RESUMEN

Emerging evidence suggests that Complex Regional Pain Syndrome (CRPS) is in part a post-traumatic autoimmune disease mediated by an adaptive immune response after limb injuries. We previously observed in a murine tibial fracture model of CRPS that pain-related behaviors were dependent upon adaptive immune mechanisms including the neuropeptide-dependent production of IgM for 5 months after injury. However, the time course of induction of this immune response and the demonstration of germinal center formation in lymphoid organs has not been evaluated. Using the murine fracture model, we employed behavioral tests of nociceptive sensitization and limb dysfunction, serum passive transfer techniques, western blot analysis of IgM accumulation, fluorescence-activated cell sorting (FACS) of lymphoid tissues and immunohistochemistry to follow the temporal activation of the adaptive immune response over the first 3 weeks after fracture. We observed that: 1) IgM protein levels in the skin of the fractured mice were elevated at 3 weeks post fracture, but not at earlier time points, 2) serum from fracture mice at 3 weeks, but not 1 and 2 weeks post fracture, had pro-nociceptive effects when passively transferred to fractured muMT mice lacking B cells, 3) fracture induced popliteal lymphadenopathy occurred ipsilateral to fracture beginning at 1 week and peaking at 3 weeks post fracture, 4) a germinal center reaction was detected by FACS analysis in the popliteal lymph nodes from injured limbs by 3 weeks post fracture but not in other lymphoid tissues, 5) germinal center formation was characterized by the induction of T follicular helper cells (Tfh) and germinal center B cells in the popliteal lymph nodes of the injured but not contralateral limbs, and 6) fracture mice treated with the Tfh signaling inhibitor FK506 had impaired germinal center reactions, reduced IgM levels, reduced nociceptive sensitization, and no pronociceptive serum effects after administration to fractured muMT mice. Collectively these data demonstrate that tibia fracture induces an adaptive autoimmune response characterized by popliteal lymph node germinal center formation and Tfh cell dependent B cell activation, resulting in nociceptive sensitization within 3 weeks.


Asunto(s)
Centro Germinal , Fracturas de la Tibia , Inmunidad Adaptativa , Animales , Modelos Animales de Enfermedad , Miembro Posterior , Inmunoglobulinas , Masculino , Ratones , Ratones Endogámicos C57BL , Nocicepción , Linfocitos T Colaboradores-Inductores , Tibia
4.
Anesthesiology ; 130(2): 292-308, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30418215

RESUMEN

BACKGROUND: Emerging evidence suggests that opioid use immediately after surgery and trauma may worsen outcomes. In these studies, the authors aimed to determine whether morphine administered for a clinically relevant time period (7 days) in a tibia fracture orthopedic surgery model had adverse effects on postoperative recovery. METHODS: Mice were given morphine twice daily for 7 days after unilateral tibial fracture and intramedullary pin fixation to model orthopedic surgery and limb trauma. Mechanical allodynia, limb-specific weight bearing, gait changes, memory, and anxiety were measured after injury. In addition, spinal cord gene expression changes as well as glial activation were measured. Finally, the authors assessed the effects of a selective Toll-like receptor 4 antagonist, TAK-242, on nociceptive and functional changes after injury. RESULTS: Tibial fracture caused several weeks of mechanical nociceptive sensitization (F(1, 216) = 573.38, P < 0.001, fracture + vehicle vs. sham + vehicle, n = 10 per group), and this change was exacerbated by the perioperative administration of morphine (F(1, 216) = 71.61, P < 0.001, fracture + morphine vs. fracture + vehicle, n = 10 per group). In additional testing, injured limb weight bearing, gait, and object location memory were worse in morphine-treated fracture mice than in untreated fracture mice. Postfracture expression levels of several genes previously associated with opioid-induced hyperalgesia, including brain-derived neurotrophic factor and prodynorphin, were unchanged, but neuroinflammation involving Toll-like receptor 4 receptor-expressing microglia was observed (6.8 ± 1.5 [mean ± SD] cells per high-power field for fracture + vehicle vs. 12 ± 2.8 fracture + morphine, P < 0.001, n = 8 per /group). Treatment with a Toll-like receptor 4 antagonist TAK242 improved nociceptive sensitization for about 2 weeks in morphine-treated fracture mice (F(1, 198) = 73.36, P < 0.001, fracture + morphine + TAK242 vs. fracture + morphine, n = 10 per group). CONCLUSIONS: Morphine treatment beginning at the time of injury impairs nociceptive recovery and other outcomes. Measures preventing glial activation through Toll-like receptor 4 signaling may reduce the adverse consequences of postoperative opioid administration.


Asunto(s)
Hiperalgesia/inducido químicamente , Microglía/efectos de los fármacos , Morfina/farmacología , Nociceptores/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Fracturas de la Tibia/fisiopatología , Analgésicos Opioides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Hiperalgesia/fisiopatología , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Recuperación de la Función/fisiología
5.
Mol Pain ; 14: 1744806918799127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30124090

RESUMEN

Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1ß, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.


Asunto(s)
Síndromes de Dolor Regional Complejo/inmunología , Síndromes de Dolor Regional Complejo/fisiopatología , Inmunidad Innata/fisiología , Inflamación/fisiopatología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos
6.
J Neuroinflammation ; 15(1): 105, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642930

RESUMEN

BACKGROUND: Both dysfunctional neuropeptide signaling and immune system activation are characteristic of complex regional pain syndrome (CRPS). Unknown is whether substance P (SP) or calcitonin gene-related peptide (CGRP) support autoantibody production and, consequently, nociceptive sensitization. METHODS: These experiments involved the use of a well-characterized tibia fracture model of CRPS. Mice deficient in SP expression (Tac1-/-) and CGRP signaling (RAMP1-/-) were used to probe the neuropeptide dependence of post-fracture sensitization and antibody production. The deposition of IgM in the spinal cord, sciatic nerves, and skin was followed using Western blotting, as was expression of the CRPS-related autoantigen cytokeratin 16 (Krt16). Passive serum transfer to B-cell-deficient muMT mice was used to assess the production of functional autoantibodies in CRPS model mice. The use of immunohistochemistry allowed us to assess neuropeptide-containing fiber distribution and Langerhans cell abundance in mouse and human CRPS patient skin, while Langerhans cell-deficient mice were used to assess the functional contributions of these cells. RESULTS: Functional SP and CGRP signaling were required both for the full development of nociceptive sensitization after fracture and the deposition of IgM in skin and neural tissues. Furthermore, the passive transfer of serum from wildtype but not neuropeptide-deficient mice to fractured muMT mice caused enhanced allodynia and postural unweighting. Langerhans cells were increased in number in the skin of fracture mice and CRPS patients, and those increases in mice were reduced in neuropeptide signaling-deficient animals. Unexpectedly, Langerhans cell-deficient mice showed normal nociceptive sensitization after fracture. However, the increased expression of Krt16 after tibia fracture was not seen in neuropeptide-deficient mice. CONCLUSIONS: Collectively, these data support the hypothesis that neuropeptide signaling in the fracture limb of mice is required for autoantigenic IgM production and nociceptive sensitization. The mechanism may be related to neuropeptide-supported autoantigen expression.


Asunto(s)
Inmunidad Adaptativa/fisiología , Síndromes de Dolor Regional Complejo/inmunología , Síndromes de Dolor Regional Complejo/metabolismo , Inmunoglobulina M/metabolismo , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Adulto , Anciano de 80 o más Años , Animales , Síndromes de Dolor Regional Complejo/etiología , Síndromes de Dolor Regional Complejo/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Humanos , Células de Langerhans/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Precursores de Proteínas/deficiencia , Precursores de Proteínas/genética , Proteína 1 Modificadora de la Actividad de Receptores/deficiencia , Proteína 1 Modificadora de la Actividad de Receptores/genética , Piel/patología , Taquicininas/deficiencia , Taquicininas/genética , Fracturas de la Tibia/complicaciones
7.
Anesthesiology ; 129(3): 557-575, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29994924

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: This study tested the hypothesis that ad lib running wheel exercise in a tibia fracture model of complex regional pain syndrome can reverse hindlimb nociceptive sensitization and inflammation in mice. METHODS: Three weeks after tibia fracture, the cast was removed and hindlimb von Frey thresholds and unweighting were tested; the mice were then randomized to either ad lib access to a running wheel for 4 weeks or no wheel access. After 4 weeks the behavioral testing was repeated and then skin, sciatic nerve, and spinal cord tissues collected for polymerase chain reaction and enzyme immunoassay measurements of neuropeptide and inflammatory mediator levels. A similar protocol was used in fracture mice treated with exercise for 4 weeks, and then the running wheel was removed for 2 weeks. Memory and anxiety were measured in both groups with use of open-field, zero-maze, and novel-objects recognition assays. RESULTS: At 7 weeks postfracture the mice with no wheel access exhibited hindlimb allodynia and unweighting, anxiety, memory loss, upregulated spinal neuropeptide signaling, and increased hind paw and spinal inflammatory mediator expression, but the postfracture mice allowed to exercise for 4 weeks exhibited none of these changes (n = 12/cohort). When exercise was stopped for 2 weeks after 4 weeks of running, hindlimb allodynia and unweighting were rekindled, and this nociceptive sensitization was associated with increased sciatic nerve neuropeptide levels and hind paw skin interleukin 6 and nerve growth factor expression (n = 12/cohort). CONCLUSIONS: Daily exercise reversed nociceptive sensitization, inflammation, anxiety, and memory loss after tibia fracture.


Asunto(s)
Ansiedad/metabolismo , Mediadores de Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Neuropéptidos/biosíntesis , Condicionamiento Físico Animal/fisiología , Fracturas de la Tibia/metabolismo , Animales , Ansiedad/prevención & control , Modelos Animales de Enfermedad , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor/métodos , Condicionamiento Físico Animal/tendencias , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Fracturas de la Tibia/terapia , Regulación hacia Arriba/fisiología
8.
J Neuroinflammation ; 13: 14, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26785976

RESUMEN

BACKGROUND: Tibia fracture followed by cast immobilization in rats evokes nociceptive, vascular, epidermal, and bone changes resembling complex regional pain syndrome (CRPS). In most cases, CRPS has three stages. Over time, this acute picture, allodynia, warmth, and edema observed at 4 weeks, gives way to a cold, dystrophic but still painful limb. In the acute phase (at 4 weeks post fracture), cutaneous immunological and NK1-receptor signaling mechanisms underlying CRPS have been discovered; however, the mechanisms responsible for the chronic phase are still unknown. The purpose of this study is to understand the mechanisms responsible for the chronic phases of CRPS (at 16 weeks post fracture) at both the peripheral and central levels. METHODS: We used rat tibial fracture/cast immobilization model of CRPS to study molecular, vascular, and nociceptive changes at 4 and 16 weeks post fracture. Immunoassays and Western blotting were carried out to monitor changes in inflammatory response and NK1-receptor signaling in the skin and spinal cord. Skin temperature and thickness were measured to elucidate vascular changes, whereas von Frey testing and unweighting were carried out to study nociceptive changes. All data were analyzed by one-way analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparison test to compare among all cohorts. RESULTS: In the acute phase (at 4 weeks post fracture), hindpaw allodynia, unweighting, warmth, edema, and/or epidermal thickening were observed among 90 % fracture rats, though by 16 weeks (chronic phase), only the nociceptive changes persisted. The expression of the neuropeptide signaling molecule substance P (SP), NK1 receptor, inflammatory mediators TNFα, IL-1ß, and IL-6 and nerve growth factor (NGF) were elevated at 4 weeks in sciatic nerve and/or skin, returning to normal levels by 16 weeks post fracture. The systemic administration of a peripherally restricted IL-1 receptor antagonist (anakinra) or of anti-NGF inhibited nociceptive behaviors at 4 weeks but not 16 weeks. However, spinal levels of NK1 receptor, TNFα, IL-1ß, and NGF were elevated at 4 and 16 weeks, and intrathecal injection of an NK1-receptor antagonist (LY303870), anakinra, or anti-NGF each reduced nociceptive behaviors at both 4 and 16 weeks. CONCLUSIONS: These results demonstrate that tibia fracture and immobilization cause peripheral changes in neuropeptide signaling and inflammatory mediator production acutely, but central spinal changes may be more important for the persistent nociceptive changes in this CRPS model.


Asunto(s)
Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/fisiopatología , Citocinas/metabolismo , Animales , Anticuerpos/uso terapéutico , Antirreumáticos/uso terapéutico , Temperatura Corporal , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Síndromes de Dolor Regional Complejo/etiología , Modelos Animales de Enfermedad , Miembro Posterior/patología , Miembro Posterior/fisiopatología , Indoles/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Factor de Crecimiento Nervioso/inmunología , Factor de Crecimiento Nervioso/metabolismo , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Nocicepción/fisiología , Piperidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Sustancia P/metabolismo , Fracturas de la Tibia/complicaciones , Factores de Tiempo
9.
Anesth Analg ; 123(4): 1033-45, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27636578

RESUMEN

BACKGROUND: Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. METHODS: Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. RESULTS: Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve. Alendronate (60 µg/kg/d subcutaneously [s.c.]) or zoledronate (3 mg/kg/d orally) treatment for 28 days, started at the time of fracture, completely inhibited the development of hindpaw allodynia and reduced hindpaw unweighting by 44% ± 13% and 58% ± 5%, respectively. Orally administered zoledronate (3 mg/kg/d for 21 days) treatment also completely reversed established allodynia and unweighting when started at 4 weeks postfracture. Histomorphometric and microcomputed tomography analysis demonstrated that both the 3 and 60 µg/kg/d alendronate treatments reversed trabecular bone loss (an 88% ± 25% and 188% ± 39% increase in the ipsilateral distal femur BV/TV, respectively) and blocked the increase in osteoclast numbers and erosion surface observed in bilateral distal femurs and in L5 vertebra of the fracture rats. Alendronate treatment inhibited fracture-induced increases in hindpaw inflammatory mediators, reducing postfracture levels of tumor necrosis factor by 43% ± 9%, IL-1 by 60% ± 9%, IL-6 by 56% ± 14%, and NGF by 37% ± 14%, but had no effect on increased spinal cord Fos expression, or skin and sciatic nerve immunocomplex deposition. CONCLUSIONS: Collectively, these results indicate that bisphosphonate therapy inhibits pain, osteoclast activation, trabecular bone loss, and cutaneous inflammation in the rat fracture model of CRPS, data supporting the hypothesis that bisphosphonate therapy can provide effective multimodal treatment for CRPS.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Difosfonatos/uso terapéutico , Modelos Animales de Enfermedad , Fracturas de la Tibia/tratamiento farmacológico , Animales , Remodelación Ósea/fisiología , Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/patología , Difosfonatos/farmacología , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Masculino , Dolor/metabolismo , Dolor/patología , Dolor/prevención & control , Ratas , Ratas Sprague-Dawley , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/patología
10.
Neurobiol Learn Mem ; 123: 100-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26070658

RESUMEN

Complex Regional Pain Syndrome (CRPS) is a major cause of chronic pain after surgery or trauma to the limbs. Despite evidence showing that the prevalence and severity of many forms of chronic pain, including CRPS, differ between males and females, laboratory studies on sex-related differences in animal models of CRPS are not available, and the impact of sex on the transition from acute to chronic CRPS pain and disability are unexplored. Here we make use of a tibia fracture/cast mouse model that recapitulates the nociceptive, functional, vascular, trophic, inflammatory and immune aspects of CRPS. Our aim is to describe the chronic time course of nociceptive, motor and memory changes associated with fracture/cast in male and female mice, in addition to exploring their underlying spinal mechanisms. Our behavioral data shows that, compared to males, female mice display lower nociceptive thresholds following fracture in the absence of any differences in ongoing or spontaneous pain. Furthermore, female mice show exaggerated signs of motor dysfunction, deficits in fear memory, and latent sensitization that manifests long after the normalization of nociceptive thresholds. Our biochemical data show differences in the spinal cord levels of the glutamate receptor NR2b, suggesting sex differences in mechanisms of central sensitization that could account for differences in duration and severity of CRPS symptoms between the two groups.


Asunto(s)
Conducta Animal/fisiología , Sensibilización del Sistema Nervioso Central/fisiología , Síndromes de Dolor Regional Complejo/fisiopatología , Umbral del Dolor/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Animales , Síndromes de Dolor Regional Complejo/complicaciones , Síndromes de Dolor Regional Complejo/metabolismo , Modelos Animales de Enfermedad , Miedo/fisiología , Femenino , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Trastornos Motores/etiología , Trastornos Motores/fisiopatología , Factores Sexuales
11.
Anesthesiology ; 123(6): 1435-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26492479

RESUMEN

BACKGROUND: Complex regional pain syndrome (CRPS) is a painful, disabling, and often chronic condition, where many patients transition from an acute phase with prominent peripheral neurogenic inflammation to a chronic phase with evident central nervous system changes. Ketamine is a centrally acting agent believed to work through blockade of N-methyl-D- aspartate receptors and is being increasingly used for the treatment of refractory CRPS, although the basis for the drug's effects and efficacy at different stages of the syndrome remains unclear. METHODS: The authors used a mouse model of CRPS (n = 8 to 12/group) involving tibia fracture/cast immobilization to test the efficacy of ketamine (2 mg kg day; 7 days) or vehicle infusion during acute (3 weeks after fracture) and chronic (7 weeks after fracture) stages. RESULTS: Acute-phase fracture mice displayed increased limb temperature, edema, and nociceptive sensitization that were not reduced by ketamine. Fracture mice treated with ketamine during the chronic phase showed reduced nociceptive sensitization that persisted beyond completion of the infusion. During this chronic phase, ketamine also reduced latent nociceptive sensitization and improved motor function at 18 weeks after fracture. No side effects of the infusions were identified. These behavioral changes were associated with altered spinal astrocyte activation and expression of pain-related proteins including N-methyl-D-aspartate receptor 2b, Ca/calmodulin-dependent protein kinase II, and brain-derived neurotrophic factor. CONCLUSIONS: Collectively, these results demonstrate that ketamine is efficacious in the chronic, but not acute, stage of CRPS, suggesting that the centrally acting drug is relatively ineffective in early CRPS when peripheral mechanisms are more critical for supporting nociceptive sensitization.


Asunto(s)
Analgésicos/farmacología , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Síndromes de Dolor Regional Complejo/etiología , Ketamina/farmacología , Fracturas de la Tibia/complicaciones , Enfermedad Aguda , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Estudios de Seguimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
12.
Anesthesiology ; 121(4): 852-65, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25093591

RESUMEN

BACKGROUND: Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood. METHODS: The authors used a previously characterized mouse model of tibia fracture/cast immobilization showing the principal stigmata of CRPS (n = 8 to 20 per group) observed in humans. The central hypothesis was that fracture/cast mice manifest changes in measures of thigmotaxis (indicative of anxiety) and working memory reflected in neuroplastic changes in amygdala, perirhinal cortex, and hippocampus. RESULTS: The authors demonstrate that nociceptive sensitization in these mice is accompanied by altered thigmotactic behaviors in the zero maze but not open field assay, and working memory dysfunction in novel object recognition and social memory but not in novel location recognition. Furthermore, the authors found evidence of structural changes and synaptic plasticity including changes in dendritic architecture and decreased levels of synaptophysin and brain-derived neurotrophic factor in specific brain regions. CONCLUSIONS: The study findings provide novel observations regarding behavioral changes and brain plasticity in a mouse model of CRPS. In addition to elucidating some of the supraspinal correlates of the syndrome, this work supports the potential use of therapeutic interventions that not only directly target sensory input and other peripheral mechanisms, but also attempt to ameliorate the broader pain experience by modifying its associated cognitive and emotional comorbidities.


Asunto(s)
Ansiedad/patología , Encéfalo/patología , Síndromes de Dolor Regional Complejo/patología , Modelos Animales de Enfermedad , Trastornos de la Memoria/patología , Fracturas de la Tibia/patología , Animales , Ansiedad/psicología , Encéfalo/fisiología , Síndromes de Dolor Regional Complejo/psicología , Hipocampo/patología , Masculino , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Distribución Aleatoria , Fracturas de la Tibia/psicología
13.
Pain Rep ; 9(5): e1179, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39263006

RESUMEN

Introduction: Chronic pain is a common and problematic consequence of injuries with few proven methods for prevention or treatment. In addition to pain, functional limitations and neuropsychiatric changes such as cognitive impairment and anxiety worsen outcomes. Objectives: To determine whether inhibiting activation of the adaptive immune response after limb fracture would reduce pain, functional loss, memory changes, and anxiety. Methods: These experiments used a murine tibial fracture/cast immobilization model that develops these adverse outcomes. Adaptive immunity was blocked using the immunosuppressant FK506 beginning at the time of fracture. Results: The administration of FK506 reduced mechanical allodynia and hind limb unweighting for weeks after cast removal as well as nonevoked pain measures. Fracture was associated with working memory loss in the Y-maze assay in vehicle- but not FK506-treated mice. Object recognition memory was not improved with FK506 after fracture. Also, vehicle- but not FK506-treated mice developed an anxiety phenotype. Impaired running wheel performance after cast removal over the following 2 weeks was not improved with FK506 administration. In addition, FK506 treatment blocked Immunoglobulin M (IgM) accumulation in the skin of the fractured limbs, and hippocampal enhancement of matrix metalloproteinase-8 expression, a metalloproteinase associated with neuroplastic changes after injuries, was completely blocked. Conclusion: Taken together, our results show that blocking the adaptive immune response after limb trauma reduces the severity of nociceptive and biological changes. The same treatment may reduce the adverse consequences of anxiety and memory deficits using some measures, but other measures of memory are not affected, and activity is not enhanced.

14.
Pain Rep ; 9(4): e1167, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873615

RESUMEN

A 2-day closed workshop was held in Liverpool, United Kingdom, to discuss the results of research concerning symptom-based disorders (SBDs) caused by autoantibodies, share technical knowledge, and consider future plans. Twenty-two speakers and 14 additional participants attended. This workshop set out to consolidate knowledge about the contribution of autoantibodies to SBDs. Persuasive evidence for a causative role of autoantibodies in disease often derives from experimental "passive transfer" approaches, as first established in neurological research. Here, serum immunoglobulin (IgM or IgG) is purified from donated blood and transferred to rodents, either systemically or intrathecally. Rodents are then assessed for the expression of phenotypes resembling the human condition; successful phenotype transfer is considered supportive of or proof for autoimmune pathology. Workshop participants discussed passive transfer models and wider evidence for autoantibody contribution to a range of SBDs. Clinical trials testing autoantibody reduction were presented. Cornerstones of both experimental approaches and clinical trial parameters in this field were distilled and presented in this article. Mounting evidence suggests that immunoglobulin transfer from patient donors often induces the respective SBD phenotype in rodents. Understanding antibody binding epitopes and downstream mechanisms will require substantial research efforts, but treatments to reduce antibody titres can already now be evaluated.

15.
Mol Pain ; 9: 40, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23924076

RESUMEN

BACKGROUND: CRPS is a painful, debilitating, and often-chronic condition characterized by various sensory, motor, and vascular disturbances. Despite many years of study, current treatments are limited by our understanding of the underlying mechanisms. Little is known on the molecular level concerning changes in gene expression supporting the nociceptive sensitization commonly observed in CRPS limbs, or how those changes might evolve over time. RESULTS: We used a well-characterized mouse tibial fracture/cast immobilization model of CRPS to study molecular, vascular and nociceptive changes. We observed that the acute (3 weeks after fracture) and chronic (7 weeks after fracture) phases of CRPS-like changes in our model were accompanied by unique alterations in spinal gene expression corresponding to distinct canonical pathways. For the acute phase, top regulated pathways were: chemokine signaling, glycogen degradation, and cAMP-mediated signaling; while for the chronic phase, the associated pathways were: coagulation system, granzyme A signaling, and aryl hydrocarbon receptor signaling. We then focused on the role of CcL2, a chemokine that we showed to be upregulated at the mRNA and protein levels in spinal cord tissue in our model. We confirmed its association with the nociceptive sensitization displayed in this model by demonstrating that the spinal but not peripheral administration of a CCR2 antagonist (RS504393) in CRPS animals could decrease mechanical allodynia. The spinal administration of CcL2 itself resulted in mechanical allodynia in control mice. CONCLUSIONS: Our data provide a global look at the transcriptional changes in the spinal cord that accompany the acute and chronic phases of CRPS as modeled in mice. Furthermore, it follows up on one of the top-regulated genes coding for CcL2 and validates its role in regulating nociception in the fracture/cast model of CRPS.


Asunto(s)
Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/patología , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Animales , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Médula Espinal/efectos de los fármacos
16.
J Pain ; : 104422, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37951284

RESUMEN

Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1ß and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1ß and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.

17.
Pain ; 164(2): 421-434, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976729

RESUMEN

ABSTRACT: Previously, we observed that B cells and autoantibodies mediated chronic nociceptive sensitization in the mouse tibia fracture model of complex regional pain syndrome and that complex regional pain syndrome patient antibodies were pronociceptive in fracture mice lacking mature B cells and antibodies (muMT). The current study used a lumbar spinal disk puncture (DP) model of low back pain in wild-type (WT) and muMT mice to evaluate pronociceptive adaptive immune responses. Spinal disks and cords were collected 3 weeks after DP for polymerase chain reaction and immunohistochemistry analyses. Wild-type DP mice developed 24 weeks of hindpaw mechanical allodynia and hyperalgesia, grip weakness, and a conditioned place preference response indicative of spontaneous pain, but pain responses were attenuated or absent in muMT DP mice. Spinal cord expression of inflammatory cytokines, immune cell markers, and complement components were increased in WT DP mice and in muMT DP mice. Dorsal horn immunostaining in WT DP mice demonstrated glial activation and increased complement 5a receptor expressionin spinal neurons. Serum collected from WT DP mice and injected into muMT DP mice caused nociceptive sensitization, as did intrathecal injection of IgM collected from WT DP mice, and IgM immune complexes were observed in lumbar spinal disks and cord of WT DP mice. Serum from WT tibia fracture mice was not pronociceptive in muMT DP mice and vice versa, evidence that each type of tissue trauma chronically generates its own unique antibodies and targeted antigens. These data further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain state.


Asunto(s)
Síndromes de Dolor Regional Complejo , Dolor de la Región Lumbar , Fracturas de la Tibia , Ratones , Animales , Autoanticuerpos/metabolismo , Nocicepción/fisiología , Punción Espinal/efectos adversos , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Síndromes de Dolor Regional Complejo/metabolismo , Modelos Animales de Enfermedad , Fracturas de la Tibia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Dolor de la Región Lumbar/complicaciones , Inmunoglobulina M/metabolismo
18.
Mol Pain ; 8: 85, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23191958

RESUMEN

BACKGROUND: Distal limb fracture in man can induce a complex regional pain syndrome (CRPS) with pain, warmth, edema, and cutaneous inflammation. In the present study substance P (SP, Tac1(-/-)) and CGRP receptor (RAMP1(-/-)) deficient mice were used to investigate the contribution of neuropeptide signaling to CRPS-like changes in a tibia fracture mouse model. Wildtype, Tac1(-/-), and RAMP1(-/-) mice underwent tibia fracture and casting for 3 weeks, then the cast was removed and hindpaw mechanical allodynia, unweighting, warmth, and edema were tested over time. Hindpaw skin was collected at 3 weeks post-fracture for immunoassay and femurs were collected for micro-CT analysis. RESULTS: Wildtype mice developed hindpaw allodynia, unweighting, warmth, and edema at 3 weeks post-fracture, but in the Tac1(-/-) fracture mice allodynia and unweighting were attenuated and there was no warmth and edema. RAMP1(-/-) fracture mice had a similar presentation, except there was no reduction in hindpaw edema. Hindpaw skin TNFα, IL-1ß, IL-6 and NGF levels were up-regulated in wildtype fracture mice at 3 weeks post-fracture, but in the Tac1(-/-) and RAMP1(-/-) fracture mice only IL-6 was increased. The epidermal keratinocytes were the cellular source for these inflammatory mediators. An IL-6 receptor antagonist partially reversed post-fracture pain behaviors in wildtype mice. CONCLUSIONS: In conclusion, both SP and CGRP are critical neuropeptide mediators for the pain behaviors, vascular abnormalities, and up-regulated innate immune responses observed in the fracture hindlimb. We postulate that the residual pain behaviors observed in the Tac1(-/-) and RAMP1(-/-) fracture mice are attributable to the increased IL-6 levels observed in the hindpaw skin after fracture.


Asunto(s)
Síndromes de Dolor Regional Complejo/metabolismo , Inflamación/metabolismo , Neuropéptidos/metabolismo , Dolor/metabolismo , Fracturas de la Tibia/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Síndromes de Dolor Regional Complejo/genética , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamación/genética , Ratones , Ratones Mutantes , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Neuropéptidos/genética , Dolor/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Fracturas de la Tibia/genética
19.
J Neuroinflammation ; 9: 181, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22824437

RESUMEN

Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS). Substance P (SP) mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1) leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and nerve growth factor-ß (NGF) for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (µCT). We observed that: (1) SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2) LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3) LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4) anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5) LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.


Asunto(s)
Dolor Agudo/metabolismo , Dolor Crónico/metabolismo , Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Queratinocitos/metabolismo , Sustancia P/toxicidad , Dolor Agudo/inducido químicamente , Dolor Agudo/patología , Animales , Dolor Crónico/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/fisiología , Queratinocitos/patología , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley
20.
Anesthesiology ; 116(4): 882-95, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22343473

RESUMEN

BACKGROUND: Patients with complex regional pain syndrome have increased tryptase in the skin of the affected extremity indicating mast cell (MC) accumulation and degranulation, processes known to be mediated by substance P (SP). The dysregulation of SP release from primary afferent neurons is characteristic of complex regional pain syndrome. The authors hypothesized that SP acting through the neurokinin-1 receptor results in mast cell accumulation, degranulation, and nociceptive sensitization in a rat model of complex regional pain syndrome. METHODS: Groups of 6-10 rats underwent tibia fracture and hind limb casting for 4 weeks, and the hind paw skin was harvested for histologic and immunohistochemical analysis. The effects of a selective neurokinin-1 receptor antagonist (LY303870) and of direct SP intraplantar injection were measured. Dermal MC degranulation induced by sciatic nerve stimulation and the effects of LY303870 on this process were investigated. Finally, the antinociceptive effects of acute and chronic treatment with a MC degranulator (48/80) were tested. RESULTS: The authors observed that fracture caused MC accumulation, activation, and degranulation, which were inhibited by LY303870; the percentage of MCs in close proximity to peptidergic nerve fibers increased after fracture; electrical stimulation caused MC activation and degranulation, which was blocked by LY303870; intraplantar SP-induced MC degranulation and acute administration of 48/80 caused MC degranulation and enhanced postfracture nociception, but MC-depleted animals showed less sensitization. CONCLUSIONS: These results indicate that facilitated peptidergic neuron-MC signaling after fracture can cause MC accumulation, activation, and degranulation in the injured limb, resulting in nociceptive sensitization.


Asunto(s)
Síndromes de Dolor Regional Complejo/metabolismo , Modelos Animales de Enfermedad , Mastocitos/metabolismo , Nocicepción/fisiología , Sustancia P/fisiología , Fracturas de la Tibia/metabolismo , Animales , Síndromes de Dolor Regional Complejo/patología , Indoles/farmacología , Masculino , Mastocitos/efectos de los fármacos , Antagonistas del Receptor de Neuroquinina-1 , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA