Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766573

RESUMEN

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Asunto(s)
Proteoglicanos/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Electroencefalografía , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteoglicanos/análisis , Proteoglicanos/genética , Receptores AMPA/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética
2.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977636

RESUMEN

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Asunto(s)
Epilepsia , Convulsiones , Animales , Femenino , Humanos , Ratones , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo
3.
J Neurosci ; 40(20): 3969-3980, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32277045

RESUMEN

The amygdala is a brain area critical for the formation of fear memories. However, the nature of the teaching signal(s) that drive plasticity in the amygdala are still under debate. Here, we use optogenetic methods to investigate the contribution of ventral tegmental area (VTA) dopamine neurons to auditory-cued fear learning in male mice. Using anterograde and retrograde labeling, we found that a sparse and relatively evenly distributed population of VTA neurons projects to the basal amygdala (BA). In vivo optrode recordings in behaving mice showed that many VTA neurons, among them putative dopamine neurons, are excited by footshocks, and acquire a response to auditory stimuli during fear learning. Combined cfos imaging and retrograde labeling in dopamine transporter (DAT) Cre mice revealed that a large majority of BA projectors (>95%) are dopamine neurons, and that BA projectors become activated by the tone-footshock pairing of fear learning protocols. Finally, silencing VTA dopamine neurons, or their axon terminals in the BA during the footshock, reduced the strength of fear memory as tested 1 d later, whereas silencing the VTA-central amygdala (CeA) projection had no effect. Thus, VTA dopamine neurons projecting to the BA contribute to fear memory formation, by coding for the saliency of the footshock event and by signaling such events to the basal amygdala.SIGNIFICANCE STATEMENT Powerful mechanisms of fear learning have evolved in animals and humans to enable survival. During fear conditioning, a sensory cue, such as a tone (the conditioned stimulus), comes to predict an innately aversive stimulus, such as a mild footshock (the unconditioned stimulus). A brain representation of the unconditioned stimulus must act as a teaching signal to instruct plasticity of the conditioned stimulus representation in fear-related brain areas. Here we show that dopamine neurons in the VTA that project to the basal amygdala contribute to such a teaching signal for plasticity, thereby facilitating the formation of fear memories. Knowledge about the role of dopamine in aversively motivated plasticity might allow further insights into maladaptive plasticities that underlie anxiety and post-traumatic stress disorders in humans.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas Dopaminérgicas/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Miedo/fisiología , Miedo/psicología , Aprendizaje/fisiología , Área Tegmental Ventral/fisiología , Estimulación Acústica , Animales , Señales (Psicología) , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Fenómenos Electrofisiológicos/fisiología , Electrochoque , Masculino , Ratones , Neuroimagen
4.
J Biol Chem ; 291(17): 9105-18, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26884337

RESUMEN

The maturation of glutamatergic synapses in the CNS is regulated by NMDA receptors (NMDARs) that gradually change from a GluN2B- to a GluN2A-dominated subunit composition during postnatal development. Here we show that NMDARs control the activity of the small GTPase ADP-ribosylation factor 6 (Arf6) by consecutively recruiting two related brefeldin A-resistant Arf guanine nucleotide exchange factors, BRAG1 and BRAG2, in a GluN2 subunit-dependent manner. In young cortical cultures, GluN2B and BRAG1 tonically activated Arf6. In mature cultures, Arf6 was activated through GluN2A and BRAG2 upon NMDA treatment, whereas the tonic Arf6 activation was not detectable any longer. This shift in Arf6 regulation and the associated drop in Arf6 activity were reversed by a knockdown of BRAG2. Given their sequential recruitment during development, we examined whether BRAG1 and BRAG2 influence synaptic currents in hippocampal CA1 pyramidal neurons using patch clamp recordings in acute slices from mice at different ages. The number of AMPA receptor (AMPAR) miniature events was reduced by depletion of BRAG1 but not by depletion of BRAG2 during the first 2 weeks after birth. In contrast, depletion of BRAG2 during postnatal weeks 4 and 5 reduced the number of AMPAR miniature events and compromised the quantal sizes of both AMPAR and NMDAR currents evoked at Schaffer collateral synapses. We conclude that both Arf6 activation through GluN2B-BRAG1 during early development and the transition from BRAG1- to BRAG2-dependent Arf6 signaling induced by the GluN2 subunit switch are critical for the development of mature glutamatergic synapses.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Brefeldino A/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Ratas , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/fisiología , Sinapsis/genética
5.
Proc Natl Acad Sci U S A ; 110(6): E526-35, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23345427

RESUMEN

Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Endocitosis , Endosomas/metabolismo , Endosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Transporte de Proteínas , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
6.
J Neurophysiol ; 114(4): 2404-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26203110

RESUMEN

STX1 is a major neuronal syntaxin protein located at the plasma membrane of the neuronal tissues. Rodent STX1 has two highly similar paralogs, STX1A and STX1B, that are thought to be functionally redundant. Interestingly, some studies have shown that the distribution patterns of STX1A and STX1B at the central and peripheral nervous systems only partially overlapped, implying that there might be differential functions between these paralogs. In the current study, we generated an STX1B knockout (KO) mouse line and studied the impact of STX1B removal in neurons of several brain regions and the neuromuscular junction (NMJ). We found that either complete removal of STX1B or selective removal of it from forebrain excitatory neurons in mice caused premature death. Autaptic hippocampal and striatal cultures derived from STX1B KO mice still maintained efficient neurotransmission compared with neurons from STX1B wild-type and heterozygous mice. Interestingly, examining high-density cerebellar cultures revealed a decrease in the spontaneous GABAergic transmission frequency, which was most likely due to a lower number of neurons in the STX1B KO cultures, suggesting that STX1B is essential for neuronal survival in vitro. Moreover, our study also demonstrated that although STX1B is dispensable for the formation of the mouse NMJ, it is required to maintain the efficiency of neurotransmission at the nerve-muscle synapse.


Asunto(s)
Encéfalo/fisiopatología , Unión Neuromuscular/fisiología , Neuronas/fisiología , Sintaxina 1/metabolismo , Animales , Western Blotting , Encéfalo/patología , Supervivencia Celular/fisiología , Células Cultivadas , Muerte , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Potenciales Postsinápticos Miniatura/fisiología , Proteínas Munc18/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Sintaxina 1/genética , Ácido gamma-Aminobutírico/metabolismo
7.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36655978

RESUMEN

During fear learning, defensive behaviors like freezing need to be finely balanced in the presence or absence of threat-predicting cues (conditioned stimulus, CS). Nevertheless, the circuits underlying such balancing are largely unknown. Here, we investigate the role of the ventral tail striatum (vTS) in auditory-cued fear learning of male mice. In vivo Ca2+ imaging showed that sizable sub-populations of direct (D1R+) and indirect pathway neurons (Adora+) in the vTS responded to footshocks, and to the initiation of movements after freezing; moreover, a sub-population of D1R+ neurons increased its responsiveness to an auditory CS during fear learning. In-vivo optogenetic silencing shows that footshock-driven activity of D1R+ neurons contributes to fear memory formation, whereas Adora+ neurons modulate freezing in the absence of a learned CS. Circuit tracing identified the posterior insular cortex (pInsCx) as an important cortical input to the vTS, and recording of optogenetically evoked EPSCs revealed long-term plasticity with opposite outcomes at the pInsCx synapses onto D1R+ - and Adora+ neurons. Thus, direct- and indirect pathways neurons of the vTS show differential signs of plasticity after fear learning, and balance defensive behaviors in the presence and absence of learned sensory cues.


Asunto(s)
Señales (Psicología) , Aprendizaje , Masculino , Ratones , Animales , Aprendizaje/fisiología , Condicionamiento Clásico/fisiología , Neuronas/fisiología , Miedo/fisiología
8.
Cell Rep ; 33(6): 108359, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176133

RESUMEN

Activation of the basal forebrain (BF) has been associated with increased attention, arousal, and a heightened cortical representation of the external world. In addition, BF has been implicated in the regulation of the default mode network (DMN) and associated behaviors. Here, we provide causal evidence for a role of BF in DMN regulation, highlighting a prominent role of parvalbumin (PV) GABAergic neurons. The optogenetic activation of BF PV neurons reliably drives animals toward DMN-like behaviors, with no effect on memory encoding. In contrast, BF electrical stimulation enhances memory performance and increases DMN-like behaviors. BF stimulation has a correlated impact on peptide regulation in the BF and ACC, enhancing peptides linked to grooming behavior and memory functions, supporting a crucial role of the BF in DMN regulation. We suggest that in addition to enhancing attentional functions, the BF harbors a network encompassing PV GABAergic neurons that promotes self-directed behaviors associated with the DMN.


Asunto(s)
Prosencéfalo Basal/metabolismo , Red en Modo Predeterminado/fisiopatología , Optogenética/métodos , Parvalbúminas/metabolismo , Animales , Modelos Animales de Enfermedad , Ratas
9.
Science ; 364(6443)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31097492

RESUMEN

Learning about threats is essential for survival. During threat learning, an innocuous sensory percept such as a tone acquires an emotional meaning when paired with an aversive stimulus such as a mild footshock. The amygdala is critical for threat memory formation, but little is known about upstream brain areas that process aversive somatosensory information. Using optogenetic techniques in mice, we found that silencing of the posterior insula during footshock reduced acute fear behavior and impaired 1-day threat memory. Insular cortex neurons respond to footshocks, acquire responses to tones during threat learning, and project to distinct amygdala divisions to drive acute fear versus threat memory formation. Thus, the posterior insula conveys aversive footshock information to the amygdala and is crucial for learning about potential dangers in the environment.


Asunto(s)
Adaptación Psicológica/fisiología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Recuerdo Mental/fisiología , Corteza Somatosensorial/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
10.
Science ; 366(6472): 1460, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31857474
11.
Nat Commun ; 4: 2392, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23999086

RESUMEN

The presynaptic terminals of synaptic connections are composed of a complex network of interacting proteins that collectively ensure proper synaptic transmission and plasticity characteristics. The key components of this network are the members of the RIM protein family. Here we show that RIM1α can influence short-term plasticity at cerebellar parallel-fibre synapses. We demonstrate that the loss of a single RIM isoform, RIM1α, leads to reduced calcium influx in cerebellar granule cell terminals, decreased release probability and consequently an enhanced short-term facilitation. In contrast, we find that presynaptic long-term plasticity is fully intact in the absence of RIM1α, arguing against its necessary role in the expression of this important process. Our data argue for a universal role of RIM1α in setting release probability via interaction with voltage-dependent calcium channels at different connections instead of synapse-specific functions.


Asunto(s)
Canales de Calcio/metabolismo , Cerebelo/fisiología , Proteínas de Unión al GTP/metabolismo , Plasticidad Neuronal/fisiología , Animales , Transporte Biológico , Calcio/metabolismo , Cerebelo/metabolismo , Electrofisiología , Proteínas de Unión al GTP/genética , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/metabolismo , Células de Purkinje/fisiología , Sinapsis/metabolismo , Transmisión Sináptica
12.
PLoS One ; 7(9): e45039, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984605

RESUMEN

The subiculum (SUB) is a pivotal structure positioned between the hippocampus proper and various cortical and subcortical areas. Despite the growing body of anatomical and intrinsic electrophysiological data of subicular neurons, modulation of synaptic transmission in the SUB is not well understood. In the present study we investigated the role of group II metabotropic glutamate receptors (mGluRs), which have been shown to be involved in the regulation of synaptic transmission by suppressing presynaptic cAMP activity. Using field potential and patch-clamp whole cell recordings we demonstrate that glutamatergic transmission at CA1-SUB synapses is depressed by group II mGluRs in a cell-type specific manner. Application of the group II mGluR agonist (2S,1'R,2'R,3'R)-2-(2, 3-dicarboxycyclopropyl)glycine (DCG-IV) led to a significantly higher reduction of excitatory postsynaptic currents in subicular bursting cells than in regular firing cells. We further used low-frequency stimulation protocols and brief high-frequency bursts to test whether synaptically released glutamate is capable of activating presynaptic mGluRs. However, neither frequency facilitation is enhanced in the presence of the group II mGluR antagonist LY341495, nor is a test stimulus given after a high-frequency burst. In summary, we present pharmacological evidence for presynaptic group II mGluRs targeting subicular bursting cells, but both low- and high-frequency stimulation protocols failed to activate presynaptically located mGluRs.


Asunto(s)
Hipocampo/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Aminoácidos/farmacología , Aminoácidos Dicarboxílicos/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Ciclopropanos/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Xantenos/farmacología
13.
J Biol Chem ; 284(14): 9225-36, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19208628

RESUMEN

IRSp53 is an essential intermediate between the activation of Rac and Cdc42 GTPases and the formation of cellular protrusions; it affects cell shape by coupling membrane-deforming activity with the actin cytoskeleton. IRSp53 is highly expressed in neurons where it is also an abundant component of the postsynaptic density (PSD). Here we analyze the physiological function of this protein in the mouse brain by generating IRSp53-deficient mice. Neurons in the hippocampus of young and adult knock-out (KO) mice do not exhibit morphological abnormalities in vivo. Conversely, primary cultured neurons derived from IRSp53 KO mice display retarded dendritic development in vitro. On a molecular level, Eps8 cooperates with IRSp53 to enhance actin bundling and interacts with IRSp53 in developing neurons. However, postsynaptic Shank proteins which are expressed at high levels in mature neurons compete with Eps8 to block actin bundling. In electrophysiological experiments the removal of IRSp53 increases synaptic plasticity as measured by augmented long term potentiation and paired-pulse facilitation. A primarily postsynaptic role of IRSp53 is underscored by the decreased size of the PSDs, which display increased levels of N-methyl-d-aspartate receptor subunits in IRSp53 KO animals. Our data suggest that the incorporation of IRSp53 into the PSD enables the protein to limit the number of postsynaptic glutamate receptors and thereby affect synaptic plasticity rather than dendritic morphology. Consistent with altered synaptic plasticity, IRSp53-deficient mice exhibit cognitive deficits in the contextual fear-conditioning paradigm.


Asunto(s)
Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Animales , Línea Celular , Forma de la Célula , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Hipocampo/citología , Hipocampo/embriología , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Sinapsis/ultraestructura , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA