RESUMEN
Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.
Asunto(s)
Linfocitos B/inmunología , Proteínas Sanguíneas/metabolismo , Inflamación/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/fisiología , Células TH1/inmunología , Células Th2/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Adolescente , Adulto , Animales , Anticuerpos Antiprotozoarios/metabolismo , Niño , Preescolar , Resistencia a la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Interferones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Prospectivos , Receptores Fc/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Adulto JovenRESUMEN
Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia (n = 24), cardiomyopathy, arrhythmia, and other cardiac diseases (n = 42), and diabetes and endocrine diseases (n = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.
Asunto(s)
Diagnóstico por Imagen , Metabolómica , Medicina de Precisión/métodos , Secuenciación Completa del Genoma , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Cardiopatías/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto JovenRESUMEN
Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not 'phase' the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available 'Genome-In-A-Bottle' (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a consensus haplotype combining multiple predictions for enhanced performance and site coverage. Finally, we also identified DNA sequence signatures associated with the genomic regions harboring phasing switch errors, which included regions of low polymorphism or SNV density.
Asunto(s)
Genoma Humano , Cromosomas Humanos , Femenino , Impresión Genómica , Haplotipos , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Análisis de Secuencia de ARNRESUMEN
Short tandem repeats (STRs) are hyper-mutable sequences in the human genome. They are often used in forensics and population genetics and are also the underlying cause of many genetic diseases. There are challenges associated with accurately determining the length polymorphism of STR loci in the genome by next-generation sequencing (NGS). In particular, accurate detection of pathological STR expansion is limited by the sequence read length during whole-genome analysis. We developed TREDPARSE, a software package that incorporates various cues from read alignment and paired-end distance distribution, as well as a sequence stutter model, in a probabilistic framework to infer repeat sizes for genetic loci, and we used this software to infer repeat sizes for 30 known disease loci. Using simulated data, we show that TREDPARSE outperforms other available software. We sampled the full genome sequences of 12,632 individuals to an average read depth of approximately 30× to 40× with Illumina HiSeq X. We identified 138 individuals with risk alleles at 15 STR disease loci. We validated a representative subset of the samples (n = 19) by Sanger and by Oxford Nanopore sequencing. Additionally, we validated the STR calls against known allele sizes in a set of GeT-RM reference cell-line materials (n = 6). Several STR loci that are entirely guanine or cytosines (G or C) have insufficient read evidence for inference and therefore could not be assayed precisely by TREDPARSE. TREDPARSE extends the limit of STR size detection beyond the physical sequence read length. This extension is critical because many of the disease risk cutoffs are close to or beyond the short sequence read length of 100 to 150 bases.
Asunto(s)
Genoma Humano/genética , Repeticiones de Microsatélite/genética , Adolescente , Adulto , Alelos , Niño , Femenino , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos , Programas InformáticosRESUMEN
The HLA gene complex on human chromosome 6 is one of the most polymorphic regions in the human genome and contributes in large part to the diversity of the immune system. Accurate typing of HLA genes with short-read sequencing data has historically been difficult due to the sequence similarity between the polymorphic alleles. Here, we introduce an algorithm, xHLA, that iteratively refines the mapping results at the amino acid level to achieve 99-100% four-digit typing accuracy for both class I and II HLA genes, taking only [Formula: see text]3 min to process a 30× whole-genome BAM file on a desktop computer.
Asunto(s)
Prueba de Histocompatibilidad/métodos , Algoritmos , Benchmarking , HumanosRESUMEN
The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus) in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging.
Asunto(s)
Sangre/virología , Virosis/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Viral/sangre , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Prevalencia , Adulto JovenRESUMEN
We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use.
Asunto(s)
Genoma Humano , Genómica , Secuenciación Completa del Genoma , Mapeo Cromosómico , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Predisposición Genética a la Enfermedad , Variación Genética , Genómica/métodos , Humanos , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Regiones no TraducidasRESUMEN
Human high-altitude (HA) adaptation or mal-adaptation is explored to understand the physiology, pathophysiology, and molecular mechanisms that underlie long-term exposure to hypoxia. Here, we report the results of an analysis of the largest whole-genome-sequencing of Chronic Mountain Sickness (CMS) and nonCMS individuals, identified candidate genes and functionally validated these candidates in a genetic model system (Drosophila). We used PreCIOSS algorithm that uses Haplotype Allele Frequency score to separate haplotypes carrying the favored allele from the noncarriers and accordingly, prioritize genes associated with the CMS or nonCMS phenotype. Haplotypes in eleven candidate regions, with SNPs mostly in nonexonic regions, were significantly different between CMS and nonCMS subjects. Closer examination of individual genes in these regions revealed the involvement of previously identified candidates (e.g., SENP1) and also unreported ones SGK3, COPS5, PRDM1, and IFT122 in CMS. Remarkably, in addition to genes like SENP1, SGK3, and COPS5 which are HIF-dependent, our study reveals for the first time HIF-independent gene PRDM1, indicating an involvement of wider, nonHIF pathways in HA adaptation. Finally, we observed that down-regulating orthologs of these genes in Drosophila significantly enhanced their hypoxia tolerance. Taken together, the PreCIOSS algorithm, applied on a large number of genomes, identifies the involvement of both new and previously reported genes in selection sweeps, highlighting the involvement of multiple hypoxia response systems. Since the overwhelming majority of SNPs are in nonexonic (and possibly regulatory) regions, we speculate that adaptation to HA necessitates greater genetic flexibility allowing for transcript variability in response to graded levels of hypoxia.
Asunto(s)
Aclimatación/genética , Mal de Altura/genética , Adaptación Fisiológica/genética , Adulto , Alelos , Altitud , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Animales , Enfermedad Crónica , Drosophila/genética , Evolución Molecular , Frecuencia de los Genes/genética , Haplotipos/genética , Humanos , Hipoxia/genética , Hipoxia/fisiopatología , Masculino , Perú , Polimorfismo de Nucleótido Simple/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Secuenciación Completa del Genoma/métodosRESUMEN
Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.
Asunto(s)
Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutagénesis/genética , Mutación Puntual/genética , Células Cultivadas , Análisis Mutacional de ADN , Epistasis Genética/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Persona de Mediana Edad , Modelos Genéticos , Sistemas de Lectura Abierta/genéticaRESUMEN
There is increasing evidence that the phenotypic effects of genomic sequence variants are best understood in terms of variant haplotypes rather than as isolated polymorphisms. Haplotype analysis is also critically important for uncovering population histories and for the study of evolutionary genetics. Although the sequencing of individual human genomes to reveal personal collections of sequence variants is now well established, there has been slower progress in the phasing of these variants into pairs of haplotypes along each pair of chromosomes. Here, we have developed a distinct approach to haplotyping that can yield chromosome-length haplotypes, including the vast majority of heterozygous single-nucleotide polymorphisms (SNPs) in an individual human genome. This approach exploits the haploid nature of sperm cells and employs a combination of genotyping and low-coverage sequencing on a short-read platform. In addition to generating chromosome-length haplotypes, the approach can directly identify recombination events (averaging 1.1 per chromosome) with a median resolution of <100 kb.
Asunto(s)
Genoma Humano , Haplotipos/genética , Espermatozoides , Mapeo Cromosómico , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.
Asunto(s)
Genoma/genética , Hydra/genética , Animales , Antozoos/genética , Comamonadaceae/genética , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Hydra/microbiología , Hydra/ultraestructura , Datos de Secuencia Molecular , Unión Neuromuscular/ultraestructuraRESUMEN
BACKGROUND: In humans it is unknown if the composition of the gut microbiota alters the risk of Plasmodium falciparum infection or the risk of developing febrile malaria once P. falciparum infection is established. Here we collected stool samples from a cohort composed of 195 Malian children and adults just prior to an intense P. falciparum transmission season. We assayed these samples using massively parallel sequencing of the 16S ribosomal RNA gene to identify the composition of the gut bacterial communities in these individuals. During the ensuing 6-month P. falciparum transmission season we examined the relationship between the stool microbiota composition of individuals in this cohort and their prospective risk of both P. falciparum infection and febrile malaria. RESULTS: Consistent with prior studies, stool microbial diversity in the present cohort increased with age, although the overall microbiota profile was distinct from cohorts in other regions of Africa, Asia and North America. Age-adjusted Cox regression analysis revealed a significant association between microbiota composition and the prospective risk of P. falciparum infection; however, no relationship was observed between microbiota composition and the risk of developing febrile malaria once P. falciparum infection was established. CONCLUSIONS: These findings underscore the diversity of gut microbiota across geographic regions, and suggest that strategic modulation of gut microbiota composition could decrease the risk of P. falciparum infection in malaria-endemic areas, potentially as an adjunct to partially effective malaria vaccines.
Asunto(s)
Bacterias/clasificación , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Malaria Falciparum/parasitología , Análisis de Secuencia de ARN/métodos , Adolescente , Bacterias/aislamiento & purificación , Niño , Preescolar , Femenino , Humanos , Lactante , Malaria Falciparum/sangre , Malaria Falciparum/transmisión , Masculino , Malí/epidemiología , Microbiota , Estudios Prospectivos , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Factores de Riesgo , Adulto JovenRESUMEN
UNLABELLED: Rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses that cause severe gastroenteritis in children. In addition to an error-prone genome replication mechanism, RVs can increase their genetic diversity by reassorting genes during host coinfection. Such exchanges allow RVs to acquire advantageous genes and adapt in the face of selective pressures. However, reassortment may also impose fitness costs if it unlinks genes/proteins that have accumulated compensatory, coadaptive mutations and that operate best when kept together. To better understand human RV evolutionary dynamics, we analyzed the genome sequences of 135 strains (genotype G1/G3/G4-P[8]-I1-C1-R1-A1-N1-T1-E1-H1) that were collected at a single location in Washington, DC, during the years 1974 to 1991. Intragenotypic phylogenetic trees were constructed for each viral gene using the nucleotide sequences, thereby defining novel allele level gene constellations (GCs) and illuminating putative reassortment events. The results showed that RVs with distinct GCs cocirculated during the vast majority of the collection years and that some of these GCs persisted in the community unchanged by reassortment. To investigate the influence of protein coadaptation on GC maintenance, we performed a mutual information-based analysis of the concatenated amino acid sequences and identified an extensive covariance network. Unexpectedly, amino acid covariation was highest between VP4 and VP2, which are structural components of the RV virion that are not thought to directly interact. These results suggest that GCs may be influenced by the selective constraints placed on functionally coadapted, albeit noninteracting, viral proteins. This work raises important questions about mutation-reassortment interplay and its impact on human RV evolution. IMPORTANCE: Rotaviruses are devastating human pathogens that cause severe diarrhea and kill >450,000 children each year. The virus can evolve by accumulating mutations and by acquiring new genes from other strains via a process called reassortment. However, little is known about the relationship between mutation accumulation and gene reassortment for rotaviruses and how it impacts viral evolution. In this study, we analyzed the genome sequences of human strains found in clinical fecal specimens that were collected at a single hospital over an 18-year time span. We found that many rotaviruses did not reassort their genes but instead maintained them as specific sets (i.e., constellations). By analyzing the encoded proteins, we discovered concurrent amino acid changes among them, which suggests that they are functionally coadapted to operate best when kept together. This study increases our understanding of how rotaviruses evolve over time in the human population.
Asunto(s)
Evolución Molecular , Rotavirus/genética , Rotavirus/aislamiento & purificación , Proteínas Virales/genética , Adaptación Biológica , Preescolar , Análisis por Conglomerados , District of Columbia , Genoma Viral , Humanos , Lactante , Datos de Secuencia Molecular , Filogenia , Rotavirus/clasificación , Análisis de Secuencia de ADNRESUMEN
UNLABELLED: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms. IMPORTANCE: Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.
Asunto(s)
Diarrea/virología , Infecciones por Rotavirus/virología , Rotavirus/genética , Heces/virología , Gastroenteritis/virología , Genotipo , Humanos , India , Recién Nacido , Kobuvirus/genéticaRESUMEN
Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative lengthening of telomeres. The second subgroup with oligodendrocytic morphology has frequent mutations in CIC or FUBP1, and is linked to co-deletion of the 1p/19q arms. These mutations reflect the development of two distinct molecular pathways representing the majority of IDH1 mutant gliomas. Unfortunately, due to the scarcity of endogenously derived IDH1 mutant models, there is a lack of accurate models to study mechanism and develop new therapy. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma in vivo model with concurrent mutations in TP53, CDKN2A and ATRX. The model has a similar phenotype and histopathology as the original patient tumor, expresses the IDH1 (R132H) mutant protein and exhibits an alternative lengthening of telomeres phenotype. The JHH-273 model is characteristic of anaplastic astrocytoma and represents a valuable tool for investigating the pathogenesis of this distinct molecular subset of gliomas and for preclinical testing of compounds targeting IDH1 mutations or alternative lengthening of telomeres.
Asunto(s)
Astrocitoma/genética , Astrocitoma/patología , Isocitrato Deshidrogenasa/genética , Mutación , Telómero/patología , Adulto , Animales , ADN Helicasas/genética , Modelos Animales de Enfermedad , Genes p16 , Xenoinjertos , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Ratones , Trasplante de Neoplasias/métodos , Proteínas Nucleares/genética , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/genética , Proteína Nuclear Ligada al Cromosoma XRESUMEN
Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community.
Asunto(s)
Diarrea/virología , Gastroenteritis/virología , Variación Genética , Genoma Viral , Rotavirus/genética , Rotavirus/aislamiento & purificación , Niño , Preescolar , Femenino , Genómica , Humanos , Masculino , Datos de Secuencia Molecular , Filogenia , Rotavirus/clasificación , Proteínas Virales/genéticaRESUMEN
Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.
Asunto(s)
Genoma Viral , ARN Viral/genética , Virus de la Rubéola/genética , Análisis de Secuencia de ADN , Análisis por Conglomerados , Secuencia Conservada , Femenino , Variación Genética , Genotipo , Humanos , Datos de Secuencia Molecular , Mutación Missense , Filogenia , Embarazo , Virus de la Rubéola/clasificación , Virus de la Rubéola/aislamiento & purificación , Eliminación de Secuencia , Estados UnidosRESUMEN
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Asunto(s)
Neoplasias de la Mama/genética , Variación Genética , Genoma Humano , Línea Celular Transformada , Línea Celular Tumoral , Aberraciones Cromosómicas , Femenino , Humanos , Linfocitos , Persona de Mediana Edad , Mutación , Mutación Puntual , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADNRESUMEN
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Asunto(s)
Genoma Bacteriano/genética , Genoma de los Insectos/genética , Pediculus/genética , Pediculus/microbiología , Animales , Enterobacteriaceae/genética , Genes Bacterianos/genética , Genes de Insecto/genética , Genómica/métodos , Humanos , Infestaciones por Piojos/parasitología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , SimbiosisRESUMEN
Structural variants (SVs) are common in the human genome. Because approximately half of the human genome consists of repetitive, transposable DNA sequences, it is plausible that these elements play an important role in generating SVs in humans. Sequencing of the diploid genome of one individual human (HuRef) affords us the opportunity to assess, for the first time, the impact of mobile elements on SVs in an individual in a thorough and unbiased fashion. In this study, we systematically evaluated more than 8000 SVs to identify mobile element-associated SVs as small as 100 bp and specific to the HuRef genome. Combining computational and experimental analyses, we identified and validated 706 mobile element insertion events (including Alu, L1, SVA elements, and nonclassical insertions), which added more than 305 kb of new DNA sequence to the HuRef genome compared with the Human Genome Project (HGP) reference sequence (hg18). We also identified 140 mobile element-associated deletions, which removed approximately 126 kb of sequence from the HuRef genome. Overall, approximately 10% of the HuRef-specific indels larger than 100 bp are caused by mobile element-associated events. More than one-third of the insertion/deletion events occurred in genic regions, and new Alu insertions occurred in exons of three human genes. Based on the number of insertions and the estimated time to the most recent common ancestor of HuRef and the HGP reference genome, we estimated the Alu, L1, and SVA retrotransposition rates to be one in 21 births, 212 births, and 916 births, respectively. This study presents the first comprehensive analysis of mobile element-related structural variants in the complete DNA sequence of an individual and demonstrates that mobile elements play an important role in generating inter-individual structural variation.