Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 25(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260426

RESUMEN

Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.


Asunto(s)
Materiales Biocompatibles/química , Dispersión Dinámica de Luz/métodos , Difracción de Neutrones/métodos , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Materiales Biocompatibles/metabolismo , Dispersión Dinámica de Luz/instrumentación , Difracción de Neutrones/instrumentación , Relación Estructura-Actividad , Difracción de Rayos X/instrumentación
2.
Biochim Biophys Acta ; 1858(11): 2769-2777, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27521487

RESUMEN

In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Dendrímeros/química , Portadores de Fármacos , Membrana Dobles de Lípidos/química , Liposomas/química , Ácidos Carboxílicos/química , Espectrometría Raman , Electricidad Estática , Termodinámica
3.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3700-3717, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27138452

RESUMEN

Lipids membranes, the primary component of the living cell, involve collective behaviour of numerous interacting molecules. The rich morphology and complex phase diagram of the lipid systems require different strategies in describing bio-membranes in order to capture the essential properties of self-assembly processes as well as the underling molecular collective phenomena involved in biological functions. Among the experimental methods used, the scattering techniques such as small angle neutrons and X-rays scattering (SANS and SAXS) are probably the most important experimental approaches for the structural investigation of bio-membranes and mixed lipids complex systems. In this tutorial review we describe the main approaches employed in the investigation of lipid bio-membranes by means of the neutron and x-ray scattering techniques. While introducing the main structural properties of lipid bio-membranes we highlight the important role of lipid components in different biological functions of living organisms. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Asunto(s)
Lípidos de la Membrana/química , Difracción de Neutrones , Difracción de Rayos X , Dispersión del Ángulo Pequeño
4.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3531-3539, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26971858

RESUMEN

BACKGROUND: Interactions of ligands with proteins imply changes in the properties of the macromolecules that may deeply modify their biological activities and conformations and allow them to acquire new and, sometimes, unexpected abilities. The flavonoid phloretin has several pharmacological properties that are starting to be elucidated, one of which is the well-known inhibition of glucose transport. METHODS: The interactions of phloretin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis, protein ligand docking studies, fluorescence and scanning electron microscopy. RESULTS: Spectroscopic investigations suggest that the flavonoid binds to human serum albumin inducing a decrease in α-helix structures as shown by deconvolution of FTIR Amide I' band. Fluorescence and displacement studies highlight modifications of environment around Trp214 with the primary binding site located in the Sudlow's site I. In the hydrophobic cavity of subdomain IIA, molecular modeling studies suggest that phloretin is in non-planar conformation and hydrogen-bonded with Ser202 and Ser454. These changes make HSA able to withstand protein degradation due to HCLO and fibrillation. GENERAL SIGNIFICANCE: Our work aims to open new perspectives as far as the binding of flavonoids to HSA are concern and shows as the properties of both compounds can be remarkable modified after the complex formation, resulting, for instance, in a protein structure much more resistant to oxidation and fibrillation. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Asunto(s)
Flavonoides/metabolismo , Estrés Oxidativo , Agregado de Proteínas , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Humanos , Microscopía Fluorescente , Modelos Moleculares , Floretina/química , Unión Proteica , Conformación Proteica , Proteolisis , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
5.
Langmuir ; 29(23): 7079-86, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23651236

RESUMEN

We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.


Asunto(s)
Dimetilpolisiloxanos/síntesis química , Polietilenglicoles/síntesis química , Zeolitas/síntesis química , Dimetilpolisiloxanos/química , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Zeolitas/química
6.
Pharmaceutics ; 14(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335920

RESUMEN

Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development.

7.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893521

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs), inhibitors of cyclooxygenase-2, an enzyme involved in the formation of anti-inflammatory prostaglandin PGE2, are the most common treatment for chronic inflammatory diseases, such as, for example, arthritis. One of the most commonly used drugs of this class is indomethacin, a derivative of indolylacetic acid. In this work, we studied the physicochemical properties of the phospholipid composition of indomethacin obtained earlier (codenamed "Indolip") and the effect of freeze drying on its parameters. It was shown that the properties such as particle size, light transmission, phospholipid oxidation index did not change significantly, which indicated the stability of the drug after lyophilization. Measurement of the spectra of small-angle neutron scattering has shown that morphologically, Indolip is a vesicle whose radius is five times greater than the value of the bilayer thickness.

8.
Biochim Biophys Acta ; 1788(10): 2194-203, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19665447

RESUMEN

This research paper provides direct evidence concerning the localisation of free fatty acids in stratum corneum lipid model membranes. We employed partially deuterated free fatty acids to gain further information about the assembly of a stratum corneum lipid model membrane based on a ceramide of the phytosphingosine-type (ceramide [AP]) with particular respect to the position of the deuterated groups of the free fatty acids. The application of behenic-22,22,22-d(3)-acid and cerotic-12,12,13,13-d(4)-acid confirmed that the short-chain ceramide [AP] forces the longer-chained free fatty acids to incorporate into the bilayer created by ceramide [AP]. The ceramide [AP] molecules determine the structural assembly of this model membrane and obligate the long-chain free fatty acids to either arrange inside this formation or to separate as a fatty acid rich phase.


Asunto(s)
Ceramidas/química , Deuterio/química , Ácidos Grasos no Esterificados/química , Membrana Dobles de Lípidos/química , Piel/química , Ácidos Grasos no Esterificados/metabolismo , Membranas Artificiales , Difracción de Neutrones
9.
Biophys J ; 97(4): 1104-14, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19686658

RESUMEN

The goal of this study was to investigate the nanostructure of SC lipid model membranes comprising the most relevant SC lipids such as the unique-structured omega-acylceramide [EOS] in a near natural ratio with neutron diffraction. In models proposed recently the presence of ceramide [EOS] and FFA are necessary for the formation of one of the two existent crystalline lamellar phases of the SC lipids, the long-periodicity phase as well as for the normal barrier function of the SC. The focus of this study was placed on the influence of the FFA BA on the membrane structure and its localization within the membrane based on the ceramides [EOS] and [AP]. The internal nanostructure of such membranes was obtained by Fourier synthesis from the experimental diffraction patterns. The resulting neutron scattering length density profiles showed that the exceptionally long ceramide [EOS] is arranged in a short-periodicity phase created by ceramide [AP] by spanning through the whole bilayer and extending even further into the adjacent bilayer. Specifically deuterated BA allowed us to determine the exact position of this FFA inside this SC lipid model membrane. Furthermore, hydration experiments showed that the presented SC mimic system shows an extremely small intermembrane hydration of approximately 1 A, consequently the headgroups of the neighboring leaflets are positioned close to each other.


Asunto(s)
Materiales Biomiméticos/química , Ceramidas/química , Lípidos/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Animales , Epidermis , Humanos , Conformación Molecular , Difracción de Neutrones
10.
J Pharm Biomed Anal ; 47(1): 95-102, 2008 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-18242917

RESUMEN

Poly(d,l-lactide-co-glycolide) nanosupensions as intravenous nanosphere systems were produced by solvent deposition in aqueous Poloxamer 188 solutions. Light scattering techniques were applied to these colloidal systems to characterize particle sizes. Regularly shaped spherical particles were received as proved by freeze fracture replica and small-angle X-ray scattering (SAXS). SAXS was performed using intensive synchrotron radiation. Particle sizes were calculated from the small-angle part of scattering curve that were in good agreement with z-average values received from photon correlation spectroscopy (PCS). The flow field-flow fractionation (FlFFF) fractograms in combination with multi-angle light scattering (MALS) allowed an easy detection of maximum particle sizes what is most important for parenteral systems. Furthermore, high quality size distributions were received due to the separation step prior to size characterization. The calculated average size values exhibited a good correlation with z-averages determined by PCS. Only for suspensions of broader size distributions, higher deviations were observed. Comparing particle sizes with and without Poloxamer, differences in diameters resulted that were quantified. The additional Poloxamer shell was not able to be removed by an intensive washing during FlFFF focusing and separation. Especially FlFFF/MALS proved to be a valuable tool to characterize the pharmaceutical nanosuspensions in detail what is of great importance especially for controlled drug delivery systems.


Asunto(s)
Ácido Láctico , Nanosferas , Ácido Poliglicólico , Fraccionamiento de Campo-Flujo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Dispersión de Radiación , Análisis Espectral , Viscosidad
11.
Colloids Surf B Biointerfaces ; 170: 609-616, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975909

RESUMEN

Interactions of charged nanoparticles with model bio-membranes provide important insights about the soft interaction involved and the physico-chemical parameters that influence lipid bilayers stability, thus providing key features of their cytotoxicity effects onto cellular membranes. With this aim, the self-assembly processes between polyamidoamine dendrimers (generation G = 2.0 and G = 4.0) and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, x-rays, Raman and quasielastic light scattering experiments. Raman scattering data evidenced that dendrimers penetration produce a perturbation of the DPPC vesicles alkyl chains. A linear increase of liposome zeta-potential with increasing PAMAM concentration evidenced that only a fraction of the dendrimers effective charge contributes to the expression of the charge at the surface of the DPPC liposome. The linear region of the zeta-potential extends toward higher PAMAM concentrations as the dendrimer generation decreases from G = 4.0 to G = 2.0. Further increase in PAMAM concentration, outside of the linear region, causes a perturbation of the bilayer characterized by the loss in multilamellar correlation and the increase of DPPC liposome hydrodynamic radius. The findings of our investigation help to rationalize the effect of nanoparticles electrostatic interaction within lipid vesicles as well as to provide important insights about the perturbation of lipid bilayers membrane induced by nanoparticles inclusion.


Asunto(s)
Dendrímeros/química , Membrana Dobles de Lípidos/química , Lípidos/química , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
12.
Nanomaterials (Basel) ; 6(7)2016 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-28335253

RESUMEN

The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites. Herein we present recent advances in liposome drug delivery by analyzing the main structural features of liposome nanocarriers which strongly influence their interaction in solution. More specifically, we will focus on the analysis of the relevant soft interactions involved in drug delivery processes which are responsible of main behaviour of soft nanocarriers in complex physiological fluids. Investigation of the interaction between liposomes at the molecular level can be considered an important platform for the modeling of the molecular recognition processes occurring between cells. Some relevant strategies to overcome the biological barriers during the drug delivery of the nanocarriers are presented which outline the main structure-properties relationships as well as their advantages (and drawbacks) in therapeutic and biomedical applications.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(2 Pt 1): 021402, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15447486

RESUMEN

The association properties in water solution of poly(dimethylsiloxane)-b-poly(ethyleneoxide) diblock copolymer was investigated by static and dynamic light scattering in a wide range of concentrations and temperatures. The presence of a long hydrophilic poly(ethyleneoxide) (PEO) chain causes a weak tendency to microphase separation of the system which is responsible for some relevant effects. First of all we observe a late micellization process which is characterized by an unusually high value of the critical micellar concentration (c(cmc) =0.007 g/cm3) and by an unusually small aggregation number (approximately 6) of the generated micelles. Moreover, the composition of the highly hydrated micelles has been found to change sensitively with temperature. On increasing temperature dehydration of micelles has been observed together with a contemporaneous increase in the aggregation number, whereas the hydrodynamic radius remains constant in the whole range investigated. The long hydrophilic chains also stimulate an efficient entanglement process between micelles. The interpenetrating PEO chains belonging to different micelles causes the depletion of the solvent in the outer layer of micelles. The result is the formation, just after the micellization process takes place, of thermodynamically stable clusters of entangled micelles. These large structures, which are present in the system in small concentrations, maintain their structural properties unchanged in a wide range of concentrations and temperatures, and provide indirect evidence of a weak attractive component to the intermicellar interaction potential.

14.
Eur Biophys J ; 37(6): 1051-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18214463

RESUMEN

This letter presents our first results in using the benefit of selective deuteration in neutron diffraction studies on stratum corneum (SC) lipid model systems. The SC represents the outermost layer of the mammalian skin and exhibits the main skin barrier. It is essential for studying drug penetration through the SC to know the internal structure and hydration behaviour on the molecular level. The SC intercellular matrix is mainly formed by ceramides (CER), cholesterol (CHOL) and long-chain free fatty acids (FFA). Among them, CHOL is the most abundant individual lipid, but a detailed knowledge about its localisation in the SC lipid matrix is still lacking. The structure of the quaternary SC lipid model membranes composed of either CER[AP]/CHOL-D6/palmitic acid (PA)/cholesterol sulphate (ChS) or CER[AP]/CHOL-D7/PA/ChS is characterized by neutron diffraction. Neutron diffraction patterns from the oriented samples are collected at the V1 diffractometer of the Hahn-Meitner-Institute, Berlin, measured at 32 degrees C, 60% humidity and at different D2O contents. The neutron scattering length density profile in the direction normal to the surface is restored by Fourier synthesis from the experimental diffraction patterns. The analysis of scattering length density profile is a suitable tool for investigating the internal structure of the SC lipid model membranes. The major finding is the experimental proof of the CHOL localisation in SC model membrane by deuterium labelling at prominent positions in the CHOL molecules.


Asunto(s)
Colesterol/química , Deuterio/química , Membrana Dobles de Lípidos/química , Modelos Químicos , Difracción de Neutrones/métodos , Piel/química , Animales , Humanos , Conformación Molecular
15.
Eur Biophys J ; 33(4): 328-34, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12955364

RESUMEN

Small-angle neutron scattering (SANS) experiments were performed on unilamellar 1,2-dimyristoylphosphatidylcholine (DMPC) vesicles prepared in heavy water by extrusion through polycarbonate filters with 500 A pores. The data obtained at 30+/-0.1 degrees C were evaluated using a five-strip function model of the bilayer coherent neutron scattering length density, three different approximate form factors describing scattering from vesicles, and different methods of evaluation of the experimental data. It is shown that the results obtained from the SANS data in the range of scattering vector values 0.0316 A(-1)< q<0.0775 A(-1) are not sensitive to the vesicle form factor, nor to the evaluation method. Using the hollow sphere model of vesicles convoluted with the Gaussian distribution of their sizes, a constrained bilayer polar region thickness of 9 A and a DMPC headgroup volume of 325.5 A(3), it was possible to obtain from the experimental data the DMPC surface area as 58.9+/-0.8 A(2), the bilayer thickness as 44.5+/-0.3 A and the number of water molecules as 6.8+/-0.2 per DMPC located in the bilayer polar region.


Asunto(s)
Algoritmos , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Liposomas/química , Fluidez de la Membrana , Modelos Moleculares , Difracción de Neutrones/métodos , Simulación por Computador , Modelos Químicos , Conformación Molecular , Dispersión de Radiación , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA