Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ACS Chem Biol ; 8(8): 1730-6, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23675775

RESUMEN

The principal finding of this study is that two drugs, alverine and benfluorex, used in vastly different clinical settings, activated the nuclear receptor transcription factor HNF4α. Both were hits in a high-throughput screen for compounds that reversed the inhibitory effect of the fatty acid palmitate on human insulin promoter activity. Alverine is used in the treatment of irritable bowel syndrome, while benfluorex (Mediator) was used to treat hyperlipidemia and type II diabetes. Benfluorex was withdrawn from the market recently because of serious cardiovascular side effects related to fenfluramine-like activity. Strikingly, alverine and benfluorex have a previously unrecognized structural similarity, consistent with a common mechanism of action. Gene expression and biochemical studies revealed that they both activate HNF4α. This novel mechanism of action should lead to a reinterpretation of previous studies with these drugs and suggests a path toward the development of therapies for diseases such as inflammatory bowel and diabetes that may respond to HNF4α activators.


Asunto(s)
Fenfluramina/análogos & derivados , Factor Nuclear 4 del Hepatocito/metabolismo , Propilaminas/química , Línea Celular , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fenfluramina/química , Fenfluramina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Propilaminas/farmacología , Unión Proteica/efectos de los fármacos
2.
Chem Biol ; 19(7): 806-18, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22840769

RESUMEN

Hepatocyte nuclear factor (HNF)4α is a central regulator of gene expression in cell types that play a critical role in metabolic homeostasis, including hepatocytes, enterocytes, and pancreatic ß cells. Although fatty acids were found to occupy the HNF4α ligand-binding pocket and were proposed to act as ligands, there is controversy about both the nature of HNF4α ligands as well as the physiological role of the binding. Here, we report the discovery of potent synthetic HNF4α antagonists through a high-throughput screen for effectors of the human insulin promoter. These molecules bound to HNF4α with high affinity and modulated the expression of known HNF4α target genes. Notably, they were found to be selectively cytotoxic to cancer cell lines in vitro and in vivo, although in vivo potency was limited by suboptimal pharmacokinetic properties. The discovery of bioactive modulators for HNF4α raises the possibility that diseases involving HNF4α, such as diabetes and cancer, might be amenable to pharmacologic intervention by modulation of HNF4α activity.


Asunto(s)
Bencimidazoles/farmacología , Descubrimiento de Drogas , Factor Nuclear 4 del Hepatocito/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Insulina/genética , Regiones Promotoras Genéticas/genética , Sulfonamidas/farmacología , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , PPAR gamma/agonistas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Relación Estructura-Actividad , Sulfonamidas/química
3.
Mol Cancer Res ; 9(6): 782-90, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21498546

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cell-cycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Proteínas de Neoplasias/metabolismo , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción 3/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Ciclo Celular/genética , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Pancreatitis/metabolismo
4.
J Biomol Screen ; 15(6): 663-70, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20547533

RESUMEN

A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic beta-cell. A cell line from human islets in which the expression of insulin and other beta-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of beta-cell differentiated function.


Asunto(s)
Antipsicóticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Insulina/genética , Fenotiazinas/farmacología , Regiones Promotoras Genéticas , Transducción de Señal/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Relación Estructura-Actividad , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Proteína 1 Similar al Factor de Transcripción 7
5.
ChemMedChem ; 4(7): 1106-19, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19378296

RESUMEN

PPARgamma agonist DIM-Ph-4-CF(3), a template for RXRalpha agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl] acrylic acid: DIM-Ph-CF(3) is reported to inhibit cancer growth independent of PPARgamma and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARgamma ligands activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. It displaces 9-cis-retinoic acid from RXRalpha but does not activate RXRalpha. Structure-based direct design led to an RXRalpha agonist.1-Di(1H-indol-3-yl)methyl-4-trifluoromethylbenzene (DIM-Ph-4-CF(3)) is reported to inhibit cancer cell growth and to act as a transcriptional agonist of peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear receptor 4A subfamily member 1 (NR4A1). In addition, DIM-Ph-4-CF(3) exerts anticancer effects independent of these receptors because PPARgamma antagonists do not block its inhibition of cell growth, and the small pocket in the NR4A1 crystal structure suggests no ligand can bind. Because PPARgamma and NR4A1 heterodimerize with retinoid X receptor (RXR), and several PPARgamma ligands transcriptionally activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. DIM-Ph-4-CF(3) displaces 9-cis-retinoic acid from RXRalpha but does not transactivate RXRalpha. Structure-based design using DIM-Ph-4-CF(3) as a template led to the RXRalpha transcriptional agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl]acrylic acid. Its docked pose in the RXRalpha ligand binding domain suggests that binding is stabilized by interactions of its carboxylate group with arginine 316, its indoles with cysteines 269 and 432, and its 1-methyl groups with hydrophobic residues lining the binding pocket. As is expected of a selective activator of RXRalpha, but not of RARs and PPARgamma, this RXRalpha agonist, unlike DIM-Ph-4-CF(3), does not appreciably decrease cancer cell growth or induce apoptosis at pharmacologically relevant concentrations.


Asunto(s)
Fluorobencenos/química , PPAR gamma/metabolismo , Receptores X Retinoide/metabolismo , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorobencenos/síntesis química , Fluorobencenos/farmacología , Humanos , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , PPAR gamma/agonistas , Receptores de Esteroides/metabolismo , Receptores X Retinoide/agonistas
6.
Anal Chem ; 77(17): 5453-9, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16131052

RESUMEN

Nanoparticles and microparticles have many potential biomedical applications ranging from imaging to drug delivery. Therefore, in vitro systems that can analyze and optimize the interaction of such particles with cells may be beneficial. Here, we report a microfluidic system that can be used to study these interactions. As a model system, we evaluated the interaction of polymeric nanoparticles and microparticles and similar particles conjugated to aptamers that recognize the transmembrane prostate specific membrane antigen (PSMA), with cells seeded in microchannels. The binding of particles to cells that expressed or did not express the PSMA (LNCaP or PC3, respectively) were evaluated with respect to changes in fluid shear stress, PSMA expression on target cells, and particle size. Nanoparticle-aptamer bioconjugates selectively adhered to LNCaP but not PC3 cells at static and low shear (<1 dyn/cm2) but not higher shear (approximately 4.5 dyn/cm2) conditions. Control nanoparticles and microparticles lacking aptamers and microparticle-aptamer bioconjugates did not adhere to LNCaP cells, even under very low shear conditions (approximately 0.28 dyn/cm2). These results demonstrate that the interaction of particles with cells can be studied under controlled conditions, which may aid in the engineering of desired particle characteristics. The scalability, low cost, reproducibility, and high-throughput capability of this technology is potentially beneficial to examining and optimizing a wide array of cell-particle systems prior to in vivo experiments.


Asunto(s)
Microfluídica/instrumentación , Microfluídica/métodos , Nanopartículas/química , Técnicas Biosensibles , Adhesión Celular , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA