Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 24(5): 2015-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22649270

RESUMEN

Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the ß-oxidative or nonoxidative pathways. The first step in the ß-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the ß-oxidative pathway.


Asunto(s)
Derivados del Benceno/metabolismo , Coenzima A Ligasas/metabolismo , Flores/enzimología , Flores/metabolismo , Petunia/enzimología , Petunia/metabolismo , Derivados del Benceno/química , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 109(40): 16383-8, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988098

RESUMEN

Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-ß-oxidative route and/or a ß-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA ß-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA ß-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA ß-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA ß-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.


Asunto(s)
Ácido Benzoico/metabolismo , Vías Biosintéticas/fisiología , Flores/metabolismo , Odorantes/análisis , Oxidorreductasas/genética , Petunia/metabolismo , Acilcoenzima A/química , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Cartilla de ADN/genética , Genómica , Cinética , Espectrometría de Masas , Metabolómica , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/química , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrofotometría
3.
Plant Cell ; 21(12): 4002-17, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20028839

RESUMEN

Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.


Asunto(s)
Antirrhinum/enzimología , Farnesiltransferasa/metabolismo , Nicotiana/enzimología , Sesquiterpenos/metabolismo , Antirrhinum/genética , Clonación Molecular , Difosfatos/metabolismo , Diterpenos/metabolismo , Farnesiltransferasa/genética , Flores/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Monoterpenos/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Nicotiana/genética
4.
Plant J ; 59(2): 256-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19292760

RESUMEN

Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.


Asunto(s)
Antirrhinum/enzimología , Benzaldehído-Deshidrogenasa (NADP+)/metabolismo , Ácido Benzoico/metabolismo , Proteínas de Plantas/metabolismo , Antirrhinum/genética , Benzaldehído-Deshidrogenasa (NADP+)/genética , ADN Complementario/genética , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Plant J ; 54(3): 362-74, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18208524

RESUMEN

Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.


Asunto(s)
Clarkia/enzimología , Enzimas/metabolismo , Petunia/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clarkia/genética , Clarkia/metabolismo , Electroforesis en Gel de Poliacrilamida , Enzimas/genética , Eugenol/análogos & derivados , Eugenol/química , Eugenol/metabolismo , Flores/enzimología , Flores/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Petunia/genética , Petunia/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido
6.
Physiol Plant ; 117(3): 435-443, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12654045

RESUMEN

Floral volatiles, which are small and generally water-insoluble, must move from their intracellular sites of synthesis through the outermost cuticle membrane before release from the flower surface. To determine whether petal cuticle might influence volatile emissions, we performed the first analysis of petal cuticle development and its association with the emission of flower volatiles using Antirrhinum majus L. (snapdragon) as a model system. Petal cuticular wax amount and composition, cuticle thickness and ultrastructure, and the amounts of internal and emitted methylbenzoate (the major snapdragon floral scent compound) were examined during 12 days, from flower opening to senescence. Normal (n-) alkanes were found to be the major wax class of snapdragon petals (29.0% to 34.3%) throughout the 12 days examined. Besides n-alkanes, snapdragon petals possessed significant amounts of methyl branched alkanes (23.6-27.8%) and hydroxy esters (12.0-14.0%). Hydroxy esters have not been previously reported in plants. Changes in amount of methylbenzoate inside the petals followed closely with levels of methylbenzoate emission, suggesting that snapdragon petal cuticle may provide little diffusive resistance to volatile emissions. Moreover, clear associations did not exist between methylbenzoate emission and the cuticle properties examined during development. Nevertheless, the unique wax composition of snapdragon petal cuticles shows similarities with those of other highly permeable cuticles, suggesting an adaptation that could permit rapid volatile emission by scented flowers.

7.
Plant J ; 49(2): 265-75, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17241449

RESUMEN

Petunia flower petals emit large amounts of isoeugenol, which has been shown to be synthesized by isoeugenol synthase (PhIGS1) from an ester of coniferyl alcohol, hypothesized to be coniferyl acetate. This paper describes the identification and characterization of a novel petunia gene encoding an enzyme belonging to the BAHD acyltransferase family whose expression correlates with isoeugenol biosynthesis. RNAi suppression of this gene results in inhibition of isoeugenol biosynthesis. Biochemical characterization of the protein encoded by this gene showed that it has acetyltransferase activity and is most efficient with coniferyl alcohol among the alcohol substrates tested. Overall, these data support the conclusion that coniferyl acetate is the substrate of isoeugenol synthase.


Asunto(s)
Acetiltransferasas/metabolismo , Eugenol/análogos & derivados , Flores/enzimología , Petunia/enzimología , Acetiltransferasas/genética , Secuencia de Aminoácidos , ADN Complementario/química , ADN Complementario/genética , Eugenol/química , Eugenol/metabolismo , Flores/genética , Flores/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Estructura Molecular , Petunia/genética , Petunia/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 103(26): 10128-33, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16782809

RESUMEN

Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food preservation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the enzymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glandular trichomes of sweet basil (Ocimum basilicum), which synthesize and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol. Petunia (Petunia hybrida cv. Mitchell) flowers, which emit large amounts of isoeugenol, possess an enzyme homologous to the basil eugenol-forming enzyme that also uses coniferyl acetate and NADPH as substrates but catalyzes the formation of isoeugenol. The basil and petunia phenylpropene-forming enzymes belong to a structural family of NADPH-dependent reductases that also includes pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase.


Asunto(s)
Eugenol/análogos & derivados , Eugenol/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Ocimum basilicum/enzimología , Petunia/enzimología , Proteínas de Plantas/metabolismo , Especias , Ésteres/metabolismo , Eugenol/química , Genes de Plantas/genética , Hidrocarburos Aromáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Ocimum basilicum/genética , Petunia/genética , Fenoles/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidad por Sustrato
9.
J Biol Chem ; 281(33): 23357-66, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16766535

RESUMEN

We have isolated and characterized Petunia hybrida cv. Mitchell phenylacetaldehyde synthase (PAAS), which catalyzes the formation of phenylacetaldehyde, a constituent of floral scent. PAAS is a cytosolic homotetrameric enzyme that belongs to group II pyridoxal 5'-phosphate-dependent amino-acid decarboxylases and shares extensive amino acid identity (approximately 65%) with plant L-tyrosine/3,4-dihydroxy-L-phenylalanine and L-tryptophan decarboxylases. It displays a strict specificity for phenylalanine with an apparent Km of 1.2 mM. PAAS is a bifunctional enzyme that catalyzes the unprecedented efficient coupling of phenylalanine decarboxylation to oxidation, generating phenylacetaldehyde, CO2, ammonia, and hydrogen peroxide in stoichiometric amounts.


Asunto(s)
Acetaldehído/análogos & derivados , Complejos Multienzimáticos/química , Petunia/enzimología , Fenilalanina/química , Rosa/enzimología , Acetaldehído/química , Acetaldehído/metabolismo , Secuencia de Aminoácidos , Catálisis , Descarboxilación , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Oxidación-Reducción , Petunia/genética , Fenilalanina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Rosa/genética
10.
Arch Biochem Biophys ; 406(2): 261-70, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12361714

RESUMEN

Using a functional genomic approach we have isolated and characterized a cDNA that encodes a salicylic acid carboxyl methyltransferase (SAMT) from Antirrhinum majus. The sequence of the protein encoded by SAMT has higher amino acid identity to Clarkia breweri SAMT than to snapdragon benzoic acid carboxyl methyltransferase (BAMT) (55 and 40% amino acid identity, respectively). Escherichia coli-expressed SAMT protein catalyzes the formation of the volatile ester methyl salicylate from salicylic acid with a K(m) value of 83 microM. It can also methylate benzoic acid to form methyl benzoate, but its K(m) value for benzoic acid is 1.72 mM. Snapdragon flowers do not emit methyl salicylate. The potential involvement of SAMT in production and emission of methyl benzoate in snapdragon flowers was analyzed by RNA gel blot analysis. SAMT mRNA was not detected in floral tissues by RNA blot hybridization, but low levels of SAMT gene expression were detected after real-time RT-PCR in the presence of SAMT-specific primers, indicating that this gene does not contribute significantly, if at all, in methyl benzoate production and emission in snapdragon flowers. Expression of SAMT in petal tissue was found to be induced by salicylic and jasmonic acid treatments.


Asunto(s)
Antirrhinum/enzimología , Benzoatos/farmacocinética , Flores/fisiología , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Salicilatos/farmacocinética , Ácido Salicílico/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Cartilla de ADN , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Metiltransferasas/química , Metiltransferasas/genética , Datos de Secuencia Molecular , Peso Molecular , Odorantes , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Plant Cell ; 15(12): 2992-3006, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14630969

RESUMEN

The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after pollen tubes reach the ovary, a process that takes between 35 and 40 h in snapdragon and approximately 32 h in petunia. This postpollination decrease in emission is not triggered by pollen deposition on the stigma. Petunia and snapdragon both synthesize methylbenzoate from benzoic acid and S-adenosyl-l-methionine (SAM); however, they use different mechanisms to downregulate its production after pollination. In petunia, expression of the gene responsible for methylbenzoate synthesis is suppressed by ethylene. In snapdragon, the decrease in methylbenzoate emission is the result of a decrease in both S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT) activity and the ratio of SAM to S-adenosyl-l-homocysteine ("methylation index") after pollination, although the BAMT gene also is sensitive to ethylene.


Asunto(s)
Antirrhinum/fisiología , Benzoatos/metabolismo , Flores/fisiología , Metiltransferasas/genética , Petunia/fisiología , Proteínas de Plantas/genética , Antirrhinum/genética , Ácido Benzoico/metabolismo , ADN Complementario/química , ADN Complementario/genética , Etilenos/farmacología , Flores/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metilación , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Odorantes/análisis , Petunia/genética , Proteínas de Plantas/metabolismo , Reproducción/fisiología , S-Adenosilmetionina/metabolismo , Análisis de Secuencia de ADN
12.
Plant Cell ; 16(4): 977-92, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15031409

RESUMEN

The precursor of all monoterpenes is the C10 acyclic intermediate geranyl diphosphate (GPP), which is formed from the C5 compounds isopentenyl diphosphate and dimethylallyl diphosphate by GPP synthase (GPPS). We have discovered that Antirrhinum majus (snapdragon) and Clarkia breweri, two species whose floral scent is rich in monoterpenes, both possess a heterodimeric GPPS like that previously reported from Mentha piperita (peppermint). The A. majus and C. breweri cDNAs encode proteins with 53% and 45% amino acid sequence identity, respectively, to the M. piperita GPPS small subunit (GPPS.SSU). Expression of these cDNAs in Escherichia coli yielded no detectable prenyltransferase activity. However, when each of these cDNAs was coexpressed with the M. piperita GPPS large subunit (GPPS.LSU), which shares functional motifs and a high level of amino acid sequence identity with geranylgeranyl diphosphate synthases (GGPPS), active GPPS was obtained. Using a homology-based cloning strategy, a GPPS.LSU cDNA also was isolated from A. majus. Its coexpression in E. coli with A. majus GPPS.SSU yielded a functional heterodimer that catalyzed the synthesis of GPP as a main product. The expression in E. coli of A. majus GPPS.LSU by itself yielded active GGPPS, indicating that in contrast with M. piperita GPPS.LSU, A. majus GPPS.LSU is a functional GGPPS on its own. Analyses of tissue-specific, developmental, and rhythmic changes in the mRNA and protein levels of GPPS.SSU in A. majus flowers revealed that these levels correlate closely with monoterpene emission, whereas GPPS.LSU mRNA levels did not, indicating that the levels of GPPS.SSU, but not GPPS.LSU, might play a key role in regulating the formation of GPPS and, thus, monoterpene biosynthesis.


Asunto(s)
Antirrhinum/metabolismo , Clarkia/metabolismo , Dimetilaliltranstransferasa/metabolismo , Monoterpenos/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Antirrhinum/enzimología , Antirrhinum/genética , Antirrhinum/crecimiento & desarrollo , Secuencia de Bases , Clarkia/enzimología , Clarkia/genética , Clarkia/crecimiento & desarrollo , ADN Complementario/genética , ADN de Plantas/genética , Dimerización , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Geraniltranstransferasa , Datos de Secuencia Molecular , Filogenia , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
13.
Plant Cell ; 15(5): 1227-41, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12724546

RESUMEN

Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.


Asunto(s)
Alquenos/metabolismo , Transferasas Alquil y Aril/genética , Antirrhinum/enzimología , Proteínas de Arabidopsis , Flores/enzimología , Liasas Intramoleculares/genética , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Antirrhinum/genética , Antirrhinum/crecimiento & desarrollo , Ritmo Circadiano/fisiología , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/metabolismo , Luz , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
14.
Plant Physiol ; 135(4): 1993-2011, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15286288

RESUMEN

In vivo stable isotope labeling and computer-assisted metabolic flux analysis were used to investigate the metabolic pathways in petunia (Petunia hybrida) cv Mitchell leading from Phe to benzenoid compounds, a process that requires the shortening of the side chain by a C(2) unit. Deuterium-labeled Phe ((2)H(5)-Phe) was supplied to excised petunia petals. The intracellular pools of benzenoid/phenylpropanoid-related compounds (intermediates and end products) as well as volatile end products within the floral bouquet were analyzed for pool sizes and labeling kinetics by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Modeling of the benzenoid network revealed that both the CoA-dependent, beta-oxidative and CoA-independent, non-beta-oxidative pathways contribute to the formation of benzenoid compounds in petunia flowers. The flux through the CoA-independent, non-beta-oxidative pathway with benzaldehyde as a key intermediate was estimated to be about 2 times higher than the flux through the CoA-dependent, beta-oxidative pathway. Modeling of (2)H(5)-Phe labeling data predicted that in addition to benzaldehyde, benzylbenzoate is an intermediate between l-Phe and benzoic acid. Benzylbenzoate is the result of benzoylation of benzyl alcohol, for which activity was detected in petunia petals. A cDNA encoding a benzoyl-CoA:benzyl alcohol/phenylethanol benzoyltransferase was isolated from petunia cv Mitchell using a functional genomic approach. Biochemical characterization of a purified recombinant benzoyl-CoA:benzyl alcohol/phenylethanol benzoyltransferase protein showed that it can produce benzylbenzoate and phenylethyl benzoate, both present in petunia corollas, with similar catalytic efficiencies.


Asunto(s)
Derivados del Benceno/metabolismo , Flores/metabolismo , Petunia/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Benzaldehídos/metabolismo , Benzoatos/metabolismo , Secuencia Conservada , Flores/enzimología , Flores/genética , Cinética , Datos de Secuencia Molecular , Petunia/enzimología , Petunia/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA