Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 75(11): 3521-3541, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38469677

RESUMEN

We hypothesized that anthocyanins act as a sugar-buffer and an alternative electron sink during leaf senescence to prevent sugar-mediated early senescence and photoinhibition. To elucidate the role of anthocyanin, we monitored seasonal changes in photosynthetic traits, sugar, starch and N contents, pigment composition, and gene expression profiles in leaves exposed to substantially different light conditions within a canopy of an adult fullmoon maple (Acer japonicum) tree. Enhancement of starch amylolysis accompanied by cessation of starch synthesis occurred in the same manner independent of light conditions. Leaf sugar contents increased, but reached upper limits in the late stage of leaf senescence, even though leaf anthocyanins further increased after complete depletion of starch. Sun-exposed leaves maintained higher energy consumption via electron flow than shade-grown leaves during leaf N resorption. Thus, anthocyanins accumulated in sun-exposed leaves might have a regulative role as a sugar-buffer, retarding leaf senescence, and an indirect photoprotective role as an alternative sink for electron consumption to compensate declines in other metabolic processes such as starch and protein synthesis. In this context, anthocyanins may be key substrates protecting both outer-canopy leaves (against photoinhibition) and inner-canopy leaves (via shading by outer-canopy leaves) from high light stress during N resorption.


Asunto(s)
Acer , Antocianinas , Hojas de la Planta , Almidón , Acer/fisiología , Acer/metabolismo , Almidón/metabolismo , Antocianinas/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Senescencia de la Planta , Fotosíntesis
2.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579472

RESUMEN

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Asunto(s)
Asarum , Asarum/metabolismo , Estaciones del Año , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo
3.
Plant Cell Physiol ; 60(5): 1098-1108, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753722

RESUMEN

Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Viridiplantae/metabolismo , Transferencia de Energía/fisiología
4.
Front Plant Sci ; 13: 1006413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388579

RESUMEN

Leaves of fullmoon maple (Acer japonicum) turn brilliant red with anthocyanins synthesis in autumn. Based on field observations, autumn coloring mainly occurs in outer-canopy leaves exposed to sun, whereas inner-canopy leaves remain green for a certain longer period before finally turn yellowish red with a smaller amount of anthocyanins. Here, we hypothesized that outer-canopy leaves protect themselves against photooxidative stress via anthocyanins while simultaneously shading inner canopy leaves and protecting them from strong light (holocanopy hypothesis). To test this hypothesis, we investigated photoinhibition and leaf N content during autumn senescence in leaves of pot-grown seedlings of fullmoon maple either raised under shade (L0, ≈13% relative irradiance to open) or transferred to full sunlight conditions on 5th (LH1), 12th (LH2), or 18th (LH3) Oct, 2021. Dry mass-based leaf N (Nmass) in green leaves in shade-grown seedlings was ≈ 30 mg N g-1 in summer. Nmass in shed leaves (25th Oct to 1st Nov) was 11.1, 12.0, 14.6, and 10.1 mg N g-1 in L0, LH1, LH2, and LH3 conditions, respectively. Higher Nmass was observed in shed leaves in LH2, compared to other experimental conditions, suggesting an incomplete N resorption in LH2. Fv/Fm after an overnight dark-adaptation, measured on 19th Oct when leaf N was actively resorbed, ranked L0: 0.72 > LH3: 0.56 > LH1: 0.45 > LH2: 0.25. As decreased Fv/Fm indicates photoinhibition, leaves in LH2 condition suffered the most severe photoinhibition. Leaf soluble sugar content decreased, but protein carbonylation increased with decreasing Fv/Fm across shade-grown seedlings (L0, LH1, LH2, and LH3) on 19th Oct, suggesting impaired photosynthetic carbon gain and possible membrane peroxidation induced by photooxidative stress, especially in LH2 condition with less N resorption efficiency. Although the impairment of N resorption seems to depend on the timing and intensity of strong light exposure, air temperature, and consequently the degree of photoinhibition, the photoprotective role of anthocyanins in outer-canopy leaves of fullmoon maple might also contribute to allow a safe N resorption in inner-canopy leaves by prolonged shading.

5.
Biosci Biotechnol Biochem ; 71(10): 2465-72, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17928698

RESUMEN

The alpha-dicarbonyl compounds formed in the degradation of glucose and fructose were analyzed by HPLC using 2,3-diaminonaphthalene as derivatizing reagent, and identified as glucosone (GLUCO), 3-deoxyglucosone (3DG), 3-deoxyxylosone (3DX), tetrosone (TSO), triosone (TRIO), 3-deoxytetrosone (3DT), glyoxal (GO), and methylglyoxal (MGO). The results suggest that alpha-dicarbonyl compounds were formed from glucose via non-oxidative 3-deoxyglucosone formation and oxidative glucosone formation in glucose degradation. In addition, TRIO, GO, and MGO were also formed from glyceraldehyde as intermediate. The alpha-dicarbonyl compounds might be formed from glucose via these pathways in diabetes.


Asunto(s)
Desoxiglucosa/análogos & derivados , Fructosa/metabolismo , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Glioxal/metabolismo , Cetosas/metabolismo , Cromatografía Líquida de Alta Presión , Desoxiglucosa/química , Desoxiglucosa/metabolismo , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/química , Glioxal/química , Cetosas/química , Reacción de Maillard , Modelos Químicos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA