RESUMEN
Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.
Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Factores de Intercambio de Guanina Nucleótido , Homeostasis , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Apoptosis , Enterovirus/fisiología , Enterovirus/metabolismo , Células HeLa , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Células HEK293 , Interacciones Huésped-Patógeno , Transducción de Señal , eIF-2 Quinasa/metabolismoRESUMEN
In the global strategy for polio eradication, environmental surveillance (ES) has been established worldwide to monitor polioviruses. In addition, nonpolio enteroviruses are simultaneously isolated from wastewater under this ES program. Hence, ES can be used to monitor enteroviruses in sewage to supplement clinical surveillance. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in sewage using the polio ES system in Japan. Enterovirus and SARS-CoV-2 were detected in sewage from January 2019 to December 2021 and from August 2020 to November 2021, respectively. Enterovirus species such as echoviruses and coxsackieviruses were frequently detected by ES in 2019, indicating the circulation of these viruses. After the onset of the COVID-19 pandemic, sewage enterovirus detection and related patient reports were notably reduced in 2020 to 2021, suggesting changes in the hygiene behaviors of the human population in response to the pandemic. Our comparative experiment with a total of 520 reverse transcription-quantitative PCR (RT-qPCR) assays for SARS-CoV-2 detection demonstrated that the solid-based method had a significantly higher detection rate than that of the liquid-based method (24.6% and 15.9%, respectively). Moreover, the resulting RNA concentrations were correlated with the number of new COVID-19 cases (Spearman's r = 0.61). These findings indicate that the existing polio ES system can be effectively used for enterovirus and SARS-CoV-2 sewage monitoring using different procedures such as virus isolation and molecular-based detection. IMPORTANCE Long-term efforts are required to implement surveillance programs for the ongoing COVID-19 pandemic, and they will be required even in the postpandemic era. We adopted the existing polio environmental surveillance (ES) system for SARS-CoV-2 sewage monitoring in Japan as a practical and cost-effective approach. Moreover, the ES system routinely detects enteroviruses from wastewater and, therefore, can be used for enterovirus monitoring. The liquid fraction of the sewage sample is used for poliovirus and enterovirus detection, and the solid fraction can be used for SARS-CoV-2 RNA detection. The present study demonstrates how the existing ES system can be used for monitoring enteroviruses and SARS-CoV-2 in sewage.
Asunto(s)
COVID-19 , Infecciones por Enterovirus , Enterovirus , Poliomielitis , Poliovirus , Humanos , SARS-CoV-2/genética , Aguas Residuales , Aguas del Alcantarillado , Japón/epidemiología , Pandemias , ARN Viral/genética , COVID-19/epidemiología , Enterovirus/genética , Poliovirus/genética , Monitoreo del Ambiente/métodosRESUMEN
BACKGROUND: At different stages of the disease, biomarkers can help to determine disease progression and recurrence and provide a personalized indicator of therapeutic effectiveness. The serological identification of antigens by recombinant cDNA expression cloning (SEREX) has identified five SEREX antigens. RESULTS: Compared with healthy donors, anti-FIRΔexon2 and anti-SOHLH antibodies (Abs) in the sera of patients with colorectal cancer (CRC) were markedly higher. Furthermore, no correlation was noted between five SEREX antigens and the three tumor markers (CEA, CA19-9, and anti-p53 Abs), indicating that anti-FIRΔexon2 Abs are an independent candidate marker for patients with CRC. Generally, the levels of anti-FIRΔexon2 Abs combined with clinically available tumor markers were determined to be significantly higher compared with CEA, CA19-9. Moreover, in early-stage CRC, the levels of anti-FIRΔexon2 Abs combined with existing tumor markers were higher than those of CEA, CA19-9. CONCLUSION: Due to the highly heterogeneous nature of CRC, a single tumor marker is unlikely to become a standalone diagnostic test due to its commonly insufficient sensitivity and/or specificity. Using a combination antibody detection approach of tumor markers for CRC diagnosis has the potential to be an effective approach. Therefore, the use of serum protein biomarker candidates holds promise for the development of inexpensive, noninvasive, and inexpensive tests for the detection of CRC.
Asunto(s)
Antiinfecciosos , Neoplasias Colorrectales , Humanos , Antígeno CA-19-9 , Detección Precoz del Cáncer , Neoplasias Colorrectales/genética , Biomarcadores de Tumor , Anticuerpos , Antígeno CarcinoembrionarioRESUMEN
The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.
Asunto(s)
Neoplasias , Proteínas Represoras , Humanos , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Empalme Alternativo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.
Asunto(s)
Virus de la Hepatitis B del Pato , Hepatitis B Crónica , Hepatitis B , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Virus de la Hepatitis B del Pato/genética , Virus de la Hepatitis B del Pato/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Uracilo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Replicación Viral/genéticaRESUMEN
Hepatitis B, a viral infection that affects the liver, is thought to affect over 257 million people worldwide, and long-term infection can lead to life-threatening issues such as cirrhosis or liver cancer. Chronic hepatitis B develops by the interaction between hepatitis B virus (HBV) and host immune response. However, questions of how HBV-infected cells thwart immune system defenses remain unanswered. Extracellular vesicles (EVs) are used for cellular communication, carrying cargoes such as RNAs, proteins, and lipids and delivering them intracellularly after being endocytosed by target cells. HBV-infected liver cells secrete several types of EVs into body fluids such as complete and incomplete virions, and exosomes. We previously demonstrated that monocytes that incorporated EVs moved to immunoregulatory phenotypes via up-regulation of PD-L1, an immunocheckpoint molecule, and down-regulation of CD69, a leukocyte activation molecule. In this study, we transfected mice with HBV using hydrodynamic injection and studied the effects of EVs secreted by HBV-infected liver cells. EVs secreted from cells with HBV replication strongly suppressed the immune response, inhibiting the eradication of HBV-replicating cells in the mice transfected with HBV. EVs were systemically incorporated in multiple organs, including liver, bone marrow (BM), and intestine. Intriguingly, the BM cells that incorporated EVs acquired intestinal tropism and the dendritic cell populations in the intestine increased. These findings suggest that the EVs secreted by HBV-infected liver cells exert immunosuppressive functions, and that an association between the liver, bone marrow, and intestinal tract exists through EVs secreted from HBV-infected cells.
Asunto(s)
Vesículas Extracelulares/virología , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/metabolismo , Transfección , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Células Hep G2 , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Hepatitis B Crónica/patología , Humanos , Hidrodinámica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , RatonesRESUMEN
Hepatitis B virus (HBV) is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. Chronic HBV infection is a key factor in these severe liver diseases. During infection, HBV forms a nuclear viral episome in the form of covalently closed circular DNA (cccDNA). Current therapies are not able to efficiently eliminate cccDNA from infected hepatocytes. cccDNA is a master template for viral replication that is formed by the conversion of its precursor, relaxed circular DNA (rcDNA). However, the host factors critical for cccDNA formation remain to be determined. Here, we assessed whether one potential host factor, flap structure-specific endonuclease 1 (FEN1), is involved in cleavage of the flap-like structure in rcDNA. In a cell culture HBV model (Hep38.7-Tet), expression and activity of FEN1 were reduced by siRNA, shRNA, CRISPR/Cas9-mediated genome editing, and a FEN1 inhibitor. These reductions in FEN1 expression and activity did not affect nucleocapsid DNA (NC-DNA) production, but did reduce cccDNA levels in Hep38.7-Tet cells. Exogenous overexpression of wild-type FEN1 rescued the reduced cccDNA production in FEN1-depleted Hep38.7-Tet cells. Anti-FEN1 immunoprecipitation revealed the binding of FEN1 to HBV DNA. An in vitro FEN activity assay demonstrated cleavage of 5'-flap from a synthesized HBV DNA substrate. Furthermore, cccDNA was generated in vitro when purified rcDNA was incubated with recombinant FEN1, DNA polymerase, and DNA ligase. Importantly, FEN1 was required for the in vitro cccDNA formation assay. These results demonstrate that FEN1 is involved in HBV cccDNA formation in cell culture system, and that FEN1, DNA polymerase, and ligase activities are sufficient to convert rcDNA into cccDNA in vitro.
Asunto(s)
ADN Circular/metabolismo , ADN Viral/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Virus de la Hepatitis B/genética , Hepatitis B/genética , Virión/genética , ADN Circular/genética , ADN Viral/genética , Inhibidores Enzimáticos/farmacología , Endonucleasas de ADN Solapado/antagonistas & inhibidores , Endonucleasas de ADN Solapado/genética , Células Hep G2 , Hepatitis B/enzimología , Hepatitis B/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Virión/enzimología , Replicación ViralRESUMEN
Haprin (TRIM36) is a ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. It is expressed in the testes in both mice and humans and is thought to be involved in spermiogenesis, the acrosome reaction, and fertilization. However, the functional role of Haprin is poorly understood. The aim of this study was to investigate the physiological role of Haprin in fertility. Homozygous haprin-deficient mice were generated and these mice, and their spermatozoa, were analyzed to detect morphological and fertility-related abnormalities. In these models, normal spermatogenesis was observed but sperm quality was reduced with haprin-deficient mice having poorer sperm morphology and motility than wild-type mice. Interestingly, haprin-deficient mice showed normal in vivo fertility but could not fertilize oocytes under standard in vitro fertilization conditions. In conclusion, this study demonstrated that Haprin deficiency causes morphological abnormalities in spermatozoa, indicating that Haprin is involved in spermiogenesis.
Asunto(s)
Proteínas Portadoras/genética , Infertilidad Masculina/genética , Proteínas de Plasma Seminal/genética , Espermatozoides/fisiología , Reacción Acrosómica/genética , Animales , Proteínas Portadoras/metabolismo , Femenino , Fertilización/genética , Fertilización In Vitro , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Plasma Seminal/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismoRESUMEN
Human papillomavirus (HPV) has been identified as a causative agent of cervical cancer and oropharyngeal cancer (OPC). Intriguingly, estrogen and HPV were shown to play synergistic roles in cervical carcinogenesis. We recently demonstrated that the apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3, A3) family, which is inducible by estrogen, could lead to HPV DNA hypermutation and cause viral DNA integration. In the present study, we examined the relationships between estrogen-estrogen receptor α (ERα) and A3s in HPV-positive OPC. ERα expression was associated with HPV positivity in OPC biopsy samples using immunohistochemical analysis and reverse-transcription quantitative polymerase chain reaction. In addition, ERα was significantly associated with improved overall survival in HPV-positive OPC (hazard ratio, 0.26; p = 0.029). APOBEC3A (A3A) mRNA was induced by estrogen in HPV and ERα-positive OPC cells. Furthermore, A3A mRNA and protein expression were significantly higher in ERα-positive cases than in ERα-negative ones, among HPV-positive biopsy samples (p = 0.037 and 0.047). These findings suggest that A3A is associated with a good prognosis in ERα-positive OPC, and indicate the prognostic significance of ERα in HPV-positive OPC. This is the first study to demonstrate the prognostic role of ERα in HPV-positive OPC.
Asunto(s)
Alphapapillomavirus/aislamiento & purificación , Receptor alfa de Estrógeno/metabolismo , Neoplasias Orofaríngeas/patología , Anciano , Línea Celular Tumoral , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/virología , Pronóstico , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/metabolismo , Transducción de SeñalRESUMEN
Some APOBEC3 family members have antiviral activity against retroviruses and DNA viruses. Hepatitis B virus (HBV) is a DNA virus that is the major causative factor of severe liver diseases such as cirrhosis and hepatocellular carcinoma. To determine whether APOBEC3 variants in humans have different anti-HBV activities, we evaluated natural variants of APOBEC3C, APOBEC3G, and APOBEC3H using an HBV-replicating cell culture model. Our data demonstrate that the APOBEC3C variant S188I had increased restriction activity and hypermutation frequency against HBV DNA. In contrast, the APOBEC3G variant H186R did not alter the anti-HBV and hypermutation activities. Among APOBEC3H polymorphisms (hap I-VII) and splicing variants (SV-200, SV-183, SV-182, and SV-154), hap II SV-183 showed the strongest restriction activity. These data suggest that the genetic variations in APOBEC3 genes may affect the efficiency of HBV elimination in humans.
Asunto(s)
Desaminasa APOBEC-3G/genética , Aminohidrolasas/genética , Antivirales/metabolismo , Citidina Desaminasa/genética , Variación Genética , Virus de la Hepatitis B/fisiología , Desaminasa APOBEC-3G/metabolismo , Aminohidrolasas/metabolismo , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , ADN Viral/genética , Regulación de la Expresión Génica , Humanos , Hipermutación Somática de Inmunoglobulina/genética , Replicación ViralRESUMEN
Transforming growth factor (TGF)-ß inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-ß is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-ß was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-ß mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-ß causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.
Asunto(s)
Citidina Desaminasa/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , Factor de Crecimiento Transformador beta/metabolismo , Desaminasas APOBEC , Western Blotting , Línea Celular , Citosina Desaminasa/metabolismo , Hepatitis B/genética , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , ARN Viral/metabolismo , Transfección , Replicación Viral/fisiologíaRESUMEN
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.
Asunto(s)
Citidina Desaminasa/metabolismo , Virus de la Hepatitis B/genética , Edición de ARN , ARN Viral/genética , ARN Viral/metabolismo , Inmunidad Adaptativa , Linfocitos B/inmunología , Linfocitos B/virología , Secuencia de Bases , Desaminación , Productos del Gen pol/metabolismo , Células HEK293 , Células Hep G2 , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Humanos , Cambio de Clase de Inmunoglobulina , Datos de Secuencia Molecular , Mutación , Nucleocápside/genética , Nucleocápside/metabolismo , Replicón , Hipermutación Somática de Inmunoglobulina , Replicación ViralRESUMEN
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are cellular DNA/RNA-editing enzymes that play pivotal roles in the innate immune response to viral infection. APOBEC3 (A3) proteins were reported to hypermutate the genome of human papillomavirus 16 (HPV16), the causative agent of cervical cancer. However, hypermutation did not affect viral DNA maintenance, leaving the exact role of A3 against HPV infection elusive. Here we examine whether A3 proteins affect the virion assembly using an HPV16 pseudovirion (PsV) production system, in which PsVs are assembled from its capsid proteins L1/L2 encapsidating a reporter plasmid in 293FT cells. We found that co-expression of A3A or A3C in 293FT cells greatly reduced the infectivity of PsV. The reduced infectivity of PsV assembled in the presence of A3A, but not A3C, was attributed to the decreased copy number of the encapsidated reporter plasmid. On the other hand, A3C, but not A3A, efficiently bound to L1 in co-immunoprecipitation assays, which suggests that this physical interaction may lead to reduced infectivity of PsV assembled in the presence of A3C. These results provide mechanistic insights into A3s' inhibitory effects on the assembly phase of the HPV16 virion.
Asunto(s)
Citidina Desaminasa/fisiología , Papillomavirus Humano 16/patogenicidad , Proteínas/fisiología , Proteínas de la Cápside/fisiología , Citidina Desaminasa/genética , Femenino , Genoma Viral , Células HEK293 , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiología , Humanos , Proteínas Oncogénicas Virales/fisiología , Unión Proteica , Proteínas/genética , Virión/genética , Virión/patogenicidad , Virión/fisiología , Virulencia , Ensamble de VirusRESUMEN
Apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3) proteins are interferon (IFN)-inducible antiviral factors that counteract various viruses such as hepatitis B virus (HBV) and human immunodeficiency virus type 1 (HIV-1) by inducing cytidine (C)-to-uracil (U) mutations in viral DNA and inhibiting reverse transcription. However, whether APOBEC3 proteins (A3s) can hypermutate human papillomavirus (HPV) viral DNA and exhibit antiviral activity in human keratinocyte remains unknown. Here we examined the involvement of A3s in the HPV life cycle using cervical keratinocyte W12 cells, which are derived from low-grade lesions and retain episomal HPV16 genomes in their nuclei. We focused on the viral E2 gene as a potential target for A3-mediated hypermutation because this gene is frequently found as a boundary sequence in integrated viral DNA. Treatment of W12 cells with beta interferon (IFN-ß) increased expression levels of A3s such as A3A, A3F, and A3G and induced C-to-U conversions in the E2 gene in a manner depending on inhibition of uracil DNA glycosylase. Exogenous expression of A3A and A3G also induced E2 hypermutation in W12 cells. IFN-ß-induced hypermutation was blocked by transfection of small interfering RNAs against A3G (and modestly by those against A3A). However, the HPV16 episome level was not affected by overexpression of A3A and A3G in W12 cells. This study demonstrates that endogenous A3s upregulated by IFN-ß induce E2 hypermutation of HPV16 in cervical keratinocytes, and a pathogenic consequence of E2 hypermutation is discussed.
Asunto(s)
Citosina Desaminasa/metabolismo , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/genética , Interferón beta/metabolismo , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/enzimología , Mutación Puntual , Desaminasas APOBEC , Secuencia de Bases , Línea Celular , Citidina Desaminasa , Citosina Desaminasa/genética , ADN Viral/genética , ADN Viral/metabolismo , Femenino , Papillomavirus Humano 16/metabolismo , Humanos , Queratinocitos/enzimología , Queratinocitos/metabolismo , Queratinocitos/virología , Datos de Secuencia Molecular , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virologíaRESUMEN
The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U) hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG), a host factor for base excision repair (BER). When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI), hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV) replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.
Asunto(s)
Citidina Desaminasa/metabolismo , Reparación del ADN , ADN Circular/metabolismo , ADN Viral/metabolismo , Genoma Viral , Virus de la Hepatitis B/metabolismo , Mutación , Uracil-ADN Glicosidasa/metabolismo , Desaminasa APOBEC-3G , Citidina Desaminasa/genética , ADN Circular/genética , ADN Viral/genética , Células Hep G2 , Virus de la Hepatitis B/genética , Humanos , Uracil-ADN Glicosidasa/genéticaRESUMEN
Alternative splicing is an important mechanism that links to transcription and contributes to protein diversity. Disturbed alternative splicing is frequently observed in cancers, but its precise mechanism remains largely unknown. FUSE-binding protein (FBP) -interacting repressor (FIR) is a transcriptional repressor of the c-myc gene. Previous studies indicated that a splice variant of FIR, FIRΔexon2, that lacks exon2 in the transcriptional repressor domain, was increased in colorectal cancers, hepatocellular carcinomas, and leukemia cells. Furthermore, FIRΔexon2 activated c-myc transcription by disabling wild-type FIR as a dominant-negative form of FIR. Recently, somatic mutations of the SF3B1 (SAP155) gene, a subunit of the SF3B spliceosome complex, were found in myelodysplastic leukemia. In this study, FIR heterozygous knockout (FIR(+/-)) was established as a dominant-negative model of FIR in the C57BL/6 mouse. FIR(+/-) mice showed an increased c-myc mRNA expression level, particularly in peripheral blood, although FIR(+/-) mice had no apparent pathogenic phenotype. Therefore, an increased c-myc mRNA expression level alone is not enough for leukemogenesis. Nevertheless, FIR(+/-)TP53(-/-) mice generated acute T-cell lymphoblastic leukemia (T-ALL) with increased organ and/or bone marrow invasion. In conclusion, alternative splicing of FIR, generating FIRΔexon2, contributes to not only colorectal carcinogenesis but also leukemogenesis independent of the c-Myc activation pathway. Finally, we will discuss our hypothesis that FIRΔexon2 interferes with FBW7, that FIRΔexon2 inhibits PP1 in the EGFR pathway, and that FIR haploinsufficiency is potentially associated with protein expression through transcriptional and post-transcriptional mechanisms.
Asunto(s)
Empalme Alternativo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Humanos , Mutación , Fosfoproteínas/genética , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/genéticaRESUMEN
Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1ß and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1ß and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1ß, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.
Asunto(s)
Citidina Desaminasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Virus de la Hepatitis B/metabolismo , Hepatitis B/metabolismo , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , ADN Viral/biosíntesis , ADN Viral/genética , ADN Viral/inmunología , Células Hep G2 , Hepacivirus/genética , Hepacivirus/inmunología , Hepacivirus/metabolismo , Hepatitis B/genética , Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Mutación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Regulación hacia Arriba/genéticaRESUMEN
In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency of which causes male sterility and age-related cataract (as well as glaucoma), is essential for haploid spermatid development and defines, in concert with Tdrd6, key biogenesis processes of chromatoid bodies. Single and double knockouts of Tdrd7 and Tdrd6 demonstrated that these spermiogenic tudor genes orchestrate developmental programs for ordered remodeling of chromatoid bodies, including the initial establishment, subsequent RNP fusion with ubiquitous processing bodies/GW bodies and later structural maintenance. Tdrd7 suppresses LINE1 retrotransposons independently of piwi-interacting RNA (piRNA) biogenesis wherein Tdrd1 and Tdrd9 operate, indicating that distinct Tdrd pathways act against retrotransposons in the male germline. Tdrd6, in contrast, does not affect retrotransposons but functions at a later stage of spermiogenesis when chromatoid bodies exhibit aggresome-like properties. Our results delineate that chromatoid bodies assemble as an integrated compartment incorporating both germline and ubiquitous features as spermatogenesis proceeds and that the conserved tudor family genes act as master regulators of this unique RNP remodeling, which is genetically linked to the male germline integrity in mammals.
Asunto(s)
Cromatina/metabolismo , Ribonucleoproteínas/metabolismo , Espermatogénesis , Animales , Cromosomas Artificiales Bacterianos , Masculino , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologíaRESUMEN
Polio surveillance in the Global Polio Eradication Initiative has been conducted with virus isolation from stool samples of acute flaccid paralysis (AFP) cases. Under the current biorisk management/regulations, challenges arise in the timelines of the report, sensitivity of the test and containment of poliovirus (PV) isolates. In the present study, we evaluated protocols of previously reported direct detection (DD) methods targeting the VP1 or VP4-VP2 regions of the PV genome in terms of sensitivity and sequencability. An optimized protocol targeting the entire-capsid region for the VP1 sequencing showed a high sensitivity (limit of detection = 82 copies of PV genome) with a simpler and faster reaction than reported ones (i.e., with the addition of all the primers at the start of the reaction, the RT-PCR reaction finishes within 2.5 h). The DD methods targeting the VP1 region detected PV in 60 to 80% of PV-positive stool samples from AFP cases; however, minor populations of PV strains in the samples with virus mixtures were missed by the methods. Sequencability of the DD methods was primarily determined by the efficiency of the PCRs for both Sanger and nanopore sequencing. The DD method targeting the VP4-VP2 region showed higher sensitivity than that targeting the VP1 region (limit of detection = 25 copies of PV genome) and successfully detected PV from all the stool samples examined. These results suggest that DD methods are effective for the detection of PV and that further improvement of the sensitivity is essential to serve as an alternative to the current polio surveillance algorithm.
Asunto(s)
Poliomielitis , Poliovirus , Humanos , Poliovirus/genética , alfa-Fetoproteínas , Vigilancia de la Población/métodosRESUMEN
IMPORTANCE: This study presents the development of a highly sensitive on-site method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on various surfaces, including doorknobs and tables. Identifying SARS-CoV-2 RNA on these surfaces can be crucial in guiding decision-making for implementing non-pharmaceutical interventions, such as zoning strategies, improving ventilation, maintaining physical distancing, and promoting increased hand hygiene practices. Moreover, the on-site detection system can facilitate the swift initiation of mitigation responses in non-laboratory settings, including long-term care facilities and schools. The protocols established in this study offer a comprehensive approach for achieving both sensitivity and rapidity in on-site SARS-CoV-2 RNA detection. Furthermore, since the RT-qPCR assay serves as the gold standard for detecting viral RNAs, the developed protocol holds potential for application to other viruses, including enteroviruses and noroviruses.