Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(24): 6788-6802, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036575

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids have been shown to stabilize an active conformation of class A G-protein coupled receptors (GPCRs) through a conserved binding site, not present in class B GPCRs. For class B GPCRs, previous molecular dynamics (MD) simulation studies have shown PI(4,5)P2 interacting with the Glucagon receptor (GCGR), which constitutes an important target for diabetes and obesity therapeutics. In this work, we applied MD simulations supported by native mass spectrometry (nMS) to study lipid interactions with GCGR. We demonstrate how tail composition plays a role in modulating the binding of PI(4,5)P2 lipids to GCGR. Specifically, we find the PI(4,5)P2 lipids to have a higher affinity toward the inactive conformation of GCGR. Interestingly, we find that in contrast to class A GPCRs, PI(4,5)P2 appear to stabilize the inactive conformation of GCGR through a binding site conserved across class B GPCRs but absent in class A GPCRs. This suggests differences in the regulatory function of PI(4,5)P2 between class A and class B GPCRs.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Conformación Molecular , Lípidos/química
2.
J Chem Inf Model ; 61(6): 2869-2883, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34048229

RESUMEN

Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Proteínas de la Membrana , Simulación de Dinámica Molecular
3.
QRB Discov ; 3: e19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37529288

RESUMEN

Coarse-grained (CG) modelling with the Martini force field has come of age. By combining a variety of bead types and sizes with a new mapping approach, the newest version of the model is able to accurately simulate large biomolecular complexes at millisecond timescales. In this perspective, we discuss possible applications of the Martini 3 model in drug discovery and development pipelines and highlight areas for future development. Owing to its high simulation efficiency and extended chemical space, Martini 3 has great potential in the area of drug design and delivery. However, several aspects of the model should be improved before Martini 3 CG simulations can be routinely employed in academic and industrial settings. These include the development of automatic parameterisation protocols for a variety of molecule types, the improvement of backmapping procedures, the description of protein flexibility and the development of methodologies enabling efficient sampling. We illustrate our view with examples on key areas where Martini could give important contributions such as drugs targeting membrane proteins, cryptic pockets and protein-protein interactions and the development of soft drug delivery systems.

4.
Biointerphases ; 12(2): 02D405, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28476091

RESUMEN

Many antimicrobial peptides function by forming pores in the plasma membrane of the target cells. Intriguingly, some of these peptides are very short, and thus, it is not known how they can span the membrane, or whether other mechanisms of cell disruption are dominant. Here, the conformation and orientation of the 14-residue peptaibol SPF-5506-A4 (SPF) are investigated in lipid environments by atomistic and coarse grained molecular dynamics (MD) simulations, circular dichroism, and nuclear magnetic resonance (NMR) experiments. The MD simulations show that SPF is inserted spontaneously in a transmembrane orientation in both 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers resulting in thinning of the bilayers near the peptides, which drives the peptide aggregation. Furthermore, the backbone conformation of the peptide in the bilayer bound state is different from that of the NMR model solved in small bicelles. These results demonstrate that mutual adaption between the peptides and the membrane is likely to be important for pore formation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Peptaiboles/química , Proteínas Citotóxicas Formadoras de Poros/química , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA