Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 132(2): 024710, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20095697

RESUMEN

At the nanoscale, the surface becomes pivotal for the properties of semiconductors due to an increased surface-to-bulk ratio. Surface functionalization is a means to include semiconductor nanocrystals into devices. In this comprehensive experimental study we determine in detail the effect of a single thiol functional group on the electronic and optical properties of the hydrogen-passivated nanodiamond adamantane. We find that the optical properties of the diamondoid are strongly affected due to a drastic change in the occupied states. Compared to adamantane, the optical gap in adamantane-1-thiol is lowered by approximately 0.6 eV and UV luminescence is quenched. The lowest unoccupied states remain delocalized at the cluster surface leaving the diamondoid's negative electron affinity intact.

2.
Phys Rev Lett ; 103(4): 047402, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19659398

RESUMEN

The optical spectra of hydrogen-passivated diamond clusters (diamondoids) precisely defined in size and shape have been measured in the gas phase, i.e., under an environment similar to boundary conditions typically assumed by theory. Characteristic optical properties evolve for these wide band-gap semiconductor nanocrystals as a function of size, shape, and symmetry in the subnanometer regime. These effects have not previously been theoretically predicted. The optical response of the tetrahedral-shaped C_{26}H_{32} diamond cluster [1(2,3)4] pentamantane is found to be remarkably similar to that of bulk diamond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA