Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 130142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365151

RESUMEN

Injectable hydrogel-based materials have emerged as promising alendronate (ALN) delivery systems for the treatment of osteoporosis. However, their intrinsic permeability limits the sustained delivery of small-molecule drugs. In response to this challenge, we present the multifunctional hybrids composed of mesoporous silica particles decorated with hydroxyapatite and loaded with alendronate (MSP-NH2-HAp-ALN), which are immobilized in collagen/chitosan/hyaluronic acid-based hydrogel. We have mainly focused on the biological in vitro/ex vivo evaluation of developed composites. It was found that the extracts released from tested systems do not exhibit hemolytic properties and are safe for blood elements and the human liver cell model. The resulting materials create an environment conducive to differentiating human bone marrow mesenchymal stem cells and reduce the viability of osteoclast precursors (RAW 264.7). Importantly, even the system with the lowest concentration of ALN caused a substantial cytotoxic effect on RAW 264.7 cells; their viability decreased to 20 % and 10 % of control on 3 and 7 day of culture. Additionally, prolonged ALN release (up to 20 days) with minimized burst release was observed, while material features (wettability, swellability, degradation, mechanical properties) depended on MSP-NH2-HAp-ALN content. The obtained data indicate that developed composites establish a high-potential formulation for safe and effective osteoporosis therapy.


Asunto(s)
Quitosano , Osteoporosis , Humanos , Alendronato/farmacología , Ácido Hialurónico , Hidrogeles , Colágeno/farmacología , Osteoporosis/tratamiento farmacológico
2.
Int J Biol Macromol ; 271(Pt 2): 132675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845259

RESUMEN

Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.


Asunto(s)
Regeneración Ósea , Quitosano , Sulfatos de Condroitina , Gelatina , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Quitosano/química , Gelatina/química , Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química , Humanos , Reactivos de Enlaces Cruzados/química , Animales , Huesos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA