Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Anal Chem ; 96(13): 5065-5070, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517028

RESUMEN

In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 µm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.


Asunto(s)
Diagnóstico por Imagen , Proteínas , Ratas , Ratones , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Análisis de Fourier
2.
Angew Chem Int Ed Engl ; 60(27): 14811-14816, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33871147

RESUMEN

The catechol group of 3,4-dihydroxyphenylalanine (L-DOPA) derived from L-tyrosine oxidation is a key post-translational modification (PTM) in many protein biomaterials and has potential as a bioorthogonal handle for precision protein conjugation applications such as antibody-drug conjugates. Despite this potential, indiscriminate enzymatic modification of exposed tyrosine residues or complete replacement of tyrosine using auxotrophic hosts remains the preferred method of introducing the catechol moiety into proteins, which precludes many protein engineering applications. We have developed new orthogonal translation machinery to site-specifically incorporate L-DOPA into recombinant proteins and a new fluorescent biosensor to selectively monitor L-DOPA incorporation in vivo. We show simultaneous biosynthesis and incorporation of L-DOPA and apply this translation machinery to engineer a novel metalloprotein containing a DOPA-Fe chromophore.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Dihidroxifenilalanina/metabolismo , Aminoacil-ARNt Sintetasas/química , Dihidroxifenilalanina/química , Modelos Moleculares , Estructura Molecular
3.
Mol Microbiol ; 111(6): 1604-1616, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30873646

RESUMEN

The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram-negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine-containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two-component system (TCS) directly activates 4-amino-4-deoxy-l-arabinose (l-Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l-Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrABEcl TCS. Instead, PhoPEcl binds to the arnBEcl promoter to induce l-Ara4N biosynthesis and PmrAB-independent addition to the lipid A disaccharolipid. Therefore, PhoPQEcl contributes to regulation of CAMP heteroresistance in some ECC clusters.


Asunto(s)
Amino Azúcares/química , Proteínas Bacterianas/metabolismo , Colistina/farmacología , Enterobacter cloacae/genética , Lípido A/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Farmacorresistencia Bacteriana/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas
4.
Anal Chem ; 92(8): 5986-5993, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32212719

RESUMEN

The need for detailed structural characterization of glycerophospholipids (GPLs) for many types of biologically motivated applications has led to the development of novel mass spectrometry-based methodologies that utilize alternative ion activation methods. Ultraviolet photodissociation (UVPD) has shown great utility for localizing sites of unsaturation within acyl chains and to date has predominantly been used for positive mode analysis of GPLs. In the present work, UVPD is used to localize sites of unsaturation in GPL anions. Similar to UVPD mass spectra of GPL cations, UVPD of deprotonated or formate-adducted GPLs yields diagnostic fragment ions spaced 24 Da apart. This method was integrated into a liquid chromatography workflow and used to evaluate profiles of sites of unsaturation of lipids in Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). When assigning sites of unsaturation, E. coli was found to contain all unsaturation elements at the same position relative to the terminal methyl carbon of the acyl chain; the first carbon participating in a site of unsaturation was consistently seven carbons along the acyl chain when counting carbons from the terminal methyl carbon. GPLs from A. baumannii exhibited more variability in locations of unsaturation. For GPLs containing sites of unsaturation in both acyl chains, an MS3 method was devised to assign sites to specific acyl chains.


Asunto(s)
Acinetobacter baumannii/química , Proteínas Bacterianas/análisis , Escherichia coli/química , Glicerofosfolípidos/análisis , Rayos Ultravioleta , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular
5.
Anal Chem ; 92(19): 13290-13297, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32808523

RESUMEN

Lipids are a structurally diverse class of molecules with important biological functions including cellular signaling and energy storage. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) allows for direct mapping of biomolecules in tissues. Fully characterizing the structural diversity of lipids remains a challenge due to the presence of isobaric and isomeric species, which greatly complicates data interpretation when only m/z information is available. Integrating ion mobility separations aids in deconvoluting these complex mixtures and addressing the challenges of lipid IMS. Here, we demonstrate that a MALDI quadrupole time-of-flight (Q-TOF) mass spectrometer with trapped ion mobility spectrometry (TIMS) enables a >250% increase in the peak capacity during IMS experiments. MALDI TIMS-MS separation of lipid isomer standards, including sn backbone isomers, acyl chain isomers, and double-bond position and stereoisomers, is demonstrated. As a proof of concept, in situ separation and imaging of lipid isomers with distinct spatial distributions were performed using tissue sections from a whole-body mouse pup.


Asunto(s)
Lipidómica , Lípidos/análisis , Animales , Espectrometría de Movilidad Iónica , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Anal Chem ; 91(15): 9608-9615, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31305072

RESUMEN

Modification of structures of lipooligosaccharides (LOS) represents one prevalent mechanism by which Gram-negative bacteria can become resistant to key antibiotics. Owing to the significant complexity of LOS, the structural characterization of these amphipathic lipids has largely focused on elucidation of the lipid A substructures. Analysis of intact LOS enables detection of core oligosaccharide modifications and gives insight into the heterogeneity that results from combinations of lipid A and oligosaccharide substructures. Top-down analysis of intact LOS also provides the opportunity to determine unknown oligosaccharide structures, which is particularly advantageous in the context of glycoconjugate vaccine development. Advances in mass spectrometry technologies, including the development of MSn capabilities and alternative ion activation techniques, have made top-down analysis an indispensable tool for structural characterization of complex biomolecules. Here we combine online chromatographic separations with MS3 utilizing ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). HCD generally provides information about the presence of labile modifications via neutral loss fragments in addition to the saccharide linkage arrangement, whereas UVPD gives more detailed insight about saccharide branching and the positions of nonstoichiometric modifications. This integrated approach was used to characterize LOS from Acinetobacter baumannii 1205 and 5075. Notably, MS3 analysis of A. baumannii 1205, an antibiotic-resistant strain, confirmed phosphoethanolamine and hexosamine modification of the lipid A substructure and further enabled derivation of a core oligosaccharide structure.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Farmacorresistencia Bacteriana , Lipopolisacáridos/química , Antibacterianos/farmacología , Cromatografía Liquida , Lipopolisacáridos/metabolismo , Espectrometría de Masas
7.
Anal Chem ; 91(9): 6019-6026, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932467

RESUMEN

Structural characterization of sulfated glycosaminoglycans (GAGs) by mass spectrometry has long been a formidable analytical challenge owing to their high structural variability and the propensity for sulfate decomposition upon activation with low-energy ion activation methods. While derivatization and complexation workflows have aimed to generate informative spectra using low-energy ion activation methods, alternative ion activation methods present the opportunity to obtain informative spectra from native GAG structures. Both electron- and photon-based activation methods, including electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), and extreme ultraviolet photon activation, have been explored previously to overcome the limitations associated with low-energy activation methods for GAGs and other sulfated oligosaccharides. Further, implementation of such methods on high-resolution mass spectrometers has aided the interpretation of the complex spectra generated. Here, we explore ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer as another option for structural characterization of GAGs. UVPD spectra for both dermatan and heparan sulfate structures display extensive fragmentation including both glycosidic and cross-ring cleavages with the extent of sulfate retention comparable to that observed by EDD and NETD. In addition, the relatively short activation time of UVPD makes it promising for higher throughput analysis of GAGs in complex mixtures.


Asunto(s)
Electrones , Glicosaminoglicanos/química , Espectrometría de Masas/métodos , Fotones , Rayos Ultravioleta
8.
Anal Chem ; 91(10): 6820-6828, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31026154

RESUMEN

Subtle structural features in bacterial lipids such as unsaturation elements can have vast biological implications. Cyclopropane rings have been correlated with tolerance to a number of adverse conditions in bacterial phospholipids. They have also been shown to play a major role in Mycobacterium tuberculosis ( M. tuberculosis or Mtb) pathogenesis as they occur in mycolic acids (MAs) in the mycobacterial cell. Traditional collisional activation methods allow elucidation of basic structural features of lipids but fail to reveal the presence and position of cyclopropane rings. Here, we employ 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for structural characterization of cyclopropane rings in bacterial phospholipids and MAs. Upon UVPD, dual cross-ring C-C cleavages on both sides of the cyclopropane ring are observed for cyclopropyl lipids, resulting in diagnostic pairs of fragment ions spaced 14 Da apart, thus enabling cyclopropane localization. These diagnostic pairs of ions corresponding to dual cross-ring cleavage are observed in both negative and positive ion modes and afford localization of multiple cyclopropane rings within a single lipid. This method was integrated with liquid chromatography (LC) for LC/UVPD-MS analysis of cyclopropyl glycerophospholipids in Escherichia coli ( E. coli) and for analysis of MAs in Mycobacterium bovis ( M. bovis) and M. tuberculosis lipid extracts.


Asunto(s)
Ciclopropanos/análisis , Glicerofosfolípidos/análisis , Ácidos Micólicos/análisis , Ciclopropanos/química , Ciclopropanos/efectos de la radiación , Escherichia coli/química , Glicerofosfolípidos/química , Glicerofosfolípidos/efectos de la radiación , Estructura Molecular , Mycobacterium bovis/química , Mycobacterium tuberculosis/química , Ácidos Micólicos/química , Ácidos Micólicos/efectos de la radiación , Espectrometría de Masas en Tándem/métodos , Rayos Ultravioleta
9.
Anal Chem ; 90(17): 10100-10104, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30080398

RESUMEN

Desorption electrospray ionization (DESI) mass spectrometry imaging has become a powerful strategy for analysis of tissue sections, enabling differentiation of normal and diseased tissue based on changes in the lipid profiles. The most common DESI workflow involves collection of MS1 spectra as the DESI spray is rastered over a tissue section. Relying on MS1 spectra inherently limits the ability to differentiate isobaric and isomeric species or evaluate variations in the relative abundances of key isomeric lipids, such as double-bond positional isomers which may distinguish normal and diseased tissues. Here, 193 nm ultraviolet photodissociation (UVPD), a technique capable of differentiating double-bond positional isomers, is coupled with DESI to map differences in the double-bond isomer composition in tissue sections in a fast, high throughput manner compatible with imaging applications.


Asunto(s)
Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Rayos Ultravioleta , Isomerismo
10.
Anal Chem ; 90(13): 7785-7789, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29800516

RESUMEN

Analysis of large biomolecules including proteins has proven challenging using ambient ionization mass spectrometry imaging techniques. Here, we have successfully optimized desorption electrospray ionization mass spectrometry (DESI-MS) to detect intact proteins directly from tissue sections and further integrated DESI-MS to a high field asymmetric waveform ion mobility (FAIMS) device for protein imaging. Optimized DESI-FAIMS-MS parameters were used to image mouse kidney, mouse brain, and human ovarian and breast tissue samples, allowing detection of 11, 16, 14, and 16 proteoforms, respectively. Identification of protein species detected by DESI-MS was performed on-tissue by top-down ultraviolet photodissociation (UVPD) and collision induced dissociation (CID) as well as using tissue extracts by bottom-up CID and top-down UVPD. Our results demonstrate that DESI-MS imaging is suitable for the analysis of the distribution of proteins within biological tissue sections.


Asunto(s)
Imagen Molecular/métodos , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias de la Mama/metabolismo , Humanos , Ratones
11.
J Am Chem Soc ; 139(44): 15681-15690, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28988476

RESUMEN

Complete structural characterization of complex lipids, such as glycerophospholipids, by tandem mass spectrometry (MS/MS) continues to present a major challenge. Conventional activation methods do not generate fragmentation patterns that permit the simultaneous discernment of isomers which differ in both the positions of acyl chains on the glycerol backbone and the double bonds within the acyl chains. Herein we describe a hybrid collisional activation/UVPD workflow that yields near-complete structural information for glycerophospholipids. This hybrid MS3 strategy affords the lipid's sum composition based on the accurate mass measured for the intact lipid as well as highly specific diagnostic product ions that reveal both the acyl chain assignment (i.e., sn-position) and the site-specific location of double bonds in the acyl chains. This approach is demonstrated to differentiate sn-positional and double-bond-positional isomers, such as the regioisomeric phosphatidylcholines PC 16:0/18:1(n-9) and PC 18:1(n-9)/16:0, and has been integrated into an LC-MS3 workflow.


Asunto(s)
Glicerofosfolípidos/química , Espectrometría de Masas en Tándem , Fosfatidilcolinas/química , Espectrofotometría Ultravioleta
12.
Anal Chem ; 89(3): 1516-1522, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28105803

RESUMEN

Advances in mass spectrometry have made it a preferred tool for structural characterization of glycerophospholipids. Collisional activation methods commonly implemented on commercial instruments do not provide fragmentation patterns that allow elucidation of certain structural features, including acyl chain positions on the glycerol backbone and double bond positions within acyl chains. In the present work, 193 nm ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer is used to localize double bond positions within phosphatidylcholine (PC) acyl chains. Cleavage of the carbon-carbon bonds adjacent to the double bond provides a diagnostic mass difference of 24 Da and enables differentiation of double-bond positional isomers. The UVPD method was extended to the characterization of PCs in a bovine liver extract via a shotgun strategy. Positive mode higher energy collisional dissociation (HCD) and UVPD, and negative mode HCD were undertaken in a complementary manner to identify species as PCs and to localize double bonds, respectively.


Asunto(s)
Fosfatidilcolinas/química , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Hígado/metabolismo , Fotólisis/efectos de la radiación
13.
Anal Chem ; 88(1): 1044-51, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26616388

RESUMEN

Detailed structural characterization of intact rough-type lipopolysaccharides (R-LPS) was accomplished using a multi-stage mass spectrometry (MS(3)) strategy consisting of collision-induced dissociation (CID) followed by 193 ultraviolet photodissociation (UVPD) implemented on an Orbitrap Fusion mass spectrometer. Complex mixtures of R-LPS from either Escherichia coli or Salmonella enterica were directly infused into the mass spectrometer using static source nanoelectrospray ionization (nanoESI). An initial CID event performed on an R-LPS precursor produced spectra with abundant ions corresponding to the lipid A and core oligosaccharide (OS) substructures. Comparison of CID spectra of R-LPS ions with varying lipid A and core OS structures verifies that lipid A and core OS ions are consistently produced in high abundance. The resulting lipid A and core OS ions were subsequently activated by CID, high-energy collision-induced dissociation (HCD), or UVPD. For both the lipid A and core OS substructures, HCD and UVPD produced highly informative complementary spectra, with UVPD of the core OS producing an extensive array of cross-ring cleavage fragments. Successful discernment of E. coli R-LPS structures with isomeric core structures confirmed the degree to which subtle structural differences could be determined using this method.


Asunto(s)
Lipopolisacáridos/análisis , Espectrometría de Masas/métodos , Procesos Fotoquímicos , Rayos Ultravioleta , Escherichia coli/química , Nanotecnología , Salmonella enterica/química
14.
J Am Soc Mass Spectrom ; 32(7): 1759-1770, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096288

RESUMEN

Glycosaminoglycans (GAGs) are linear polysaccharides that participate in a broad range of biological functions. Their incomplete biosynthesis pathway leads to nonuniform chains and complex mixtures. For this reason, the characterization of GAGs has been a difficult hurdle for the analytical community. Recently, ultraviolet photodissociation (UVPD) has emerged as a useful tool for determining sites of modification within a GAG chain. Here, we investigate the ability for UVPD to distinguish chondroitin sulfate epimers and the effects of UVPD experimental parameters on fragmentation efficiency. Chondroitin sulfate A (CS-A) and chondroitin sulfate B (CS-B), commonly referred to as dermatan sulfate (DS), differ only in C-5 uronic acid stereochemistry. This uronic acid difference can influence GAG-protein binding and therefore can alter the specific biological function of a GAG chain. Prior tandem mass spectrometry methods investigated for the elucidation of GAG structures also have difficulty differentiating 4-O from 6-O sulfation in chondroitin sulfate GAGs. Preliminary data using UVPD to characterize GAGs showed a promising ability to characterize 4-O sulfation in CS-A GAGs. Here, we look in depth at the capability of UVPD to distinguish chondroitin sulfate C-5 diastereomers and the role of key experimental parameters in making this distinction. Results using a 193 nm excimer laser and a 213 nm solid-state laser are compared for this study. The effect of precursor ionization state, the number of laser pulses (193 or 213 nm UVPD), and the use of the low-pressure versus high-pressure trap are investigated.

15.
J Am Soc Mass Spectrom ; 32(10): 2519-2527, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34435768

RESUMEN

We demonstrate the utility of combining silicon nanopost arrays (NAPA) and trapped ion mobility imaging mass spectrometry (TIMS IMS) for high spatial resolution and specificity mapping of neutral lipid classes in tissue. Ionization of neutral lipid species such as triglycerides (TGs), cholestryl esters (CEs), and hexosylceramides (HexCers) from biological tissues has remained a challenge for imaging applications. NAPA, a matrix-free laser desorption ionization substrate, provides enhanced ionization efficiency for the above-mentioned neutral lipid species, providing complementary lipid coverage to matrix-assisted laser desorption ionization (MALDI). The combination of NAPA and TIMS IMS enables imaging of neutral lipid species at 20 µm spatial resolution while also increasing molecular coverage greater than 2-fold using gas-phase ion mobility separations. This is a significant improvement with respect to sensitivity, specificity, and spatial resolution compared to previously reported imaging studies using NAPA alone. Improved specificity for neutral lipid analysis using TIMS IMS was shown using rat kidney tissue to separate TGs, CEs, HexCers, and phospholipids into distinct ion mobility trendlines. Further, this technology allowed for the separation of isomeric species, including mobility resolved isomers of Cer(d42:2) (m/z 686.585) with distinct spatial localizations measured in rat kidney tissue section.


Asunto(s)
Lípidos/análisis , Imagen Molecular/métodos , Nanoestructuras/química , Silicio/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Encéfalo/diagnóstico por imagen , Química Encefálica/fisiología , Isomerismo , Riñón/química , Riñón/diagnóstico por imagen , Lípidos/química , Ratas
16.
J Mass Spectrom ; 55(12): e4663, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33241625

RESUMEN

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser postionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown. To understand the effect of the applied matrix on MALDI-2 analysis of lipids, samples including an equimolar lipid standard mixture, various tissue homogenates, and intact rat kidney tissue sections were analyzed using the following matrices: α-cyano-4-hydroxycinnamic acid, 2',5'-dihydroxyacetophenone, 2',5'-dihydroxybenzoic acid (DHB), and norharmane (NOR). Lipid signal enhancement of protonated species using MALDI-2 technology varied based on the matrix used. Although signal improvements were observed for all matrices, the most dramatic effects using MALDI-2 were observed using NOR and DHB. For lipid standards analyzed by MALDI-2, NOR provided the broadest coverage, enabling the detection of all 13 protonated standards, including nonpolar lipids, whereas DHB gave less coverage but gave the highest signal increase for those lipids recorded. With respect to tissue homogenates and rat kidney tissue, mass spectra were compared and showed that the number and intensity of neutral lipids tentatively identified with MALDI-2 using NOR increased significantly (e.g., fivefold intensity increase for triacylglycerol). In the cases of DHB with MALDI-2, the number of protonated lipids identified from tissue homogenates doubled with 152 on average compared with 76 with MALDI alone. High spatial resolution imaging (~20 µm) of rat kidney tissue showed similar results using DHB with 125 lipids tentatively identified from MALDI-2 spectra versus just 72 using standard MALDI. From the four matrices tested, NOR provided the greatest increase in sensitivity for neutral lipids (triacylglycerol, diacylglycerol, monoacylglycerol, and cholesterol ester), and DHB provided the highest overall number of lipids detected using MALDI-2 technology.


Asunto(s)
Lípidos/análisis , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Riñón/química , Riñón/diagnóstico por imagen , Lipidómica , Conejos , Ratas , Sensibilidad y Especificidad
17.
Nat Biotechnol ; 36(7): 624-631, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29863724

RESUMEN

Incorporation of the rare amino acid selenocysteine to form diselenide bonds can improve stability and function of synthetic peptide therapeutics. However, application of this approach to recombinant proteins has been hampered by heterogeneous incorporation, low selenoprotein yields, and poor fitness of bacterial producer strains. We report the evolution of recoded Escherichia coli strains with improved fitness that are superior hosts for recombinant selenoprotein production. We apply an engineered ß-lactamase containing an essential diselenide bond to enforce selenocysteine dependence during continuous evolution of recoded E. coli strains. Evolved strains maintain an expanded genetic code indefinitely. We engineer a fluorescent reporter to quantify selenocysteine incorporation in vivo and show complete decoding of UAG codons as selenocysteine. Replacement of native, labile disulfide bonds in antibody fragments with diselenide bonds vastly improves resistance to reducing conditions. Highly seleno-competent bacterial strains enable industrial-scale selenoprotein expression and unique diselenide architecture, advancing our ability to customize the selenoproteome.


Asunto(s)
Evolución Molecular Dirigida , Selenocisteína/genética , Selenoproteínas/genética , Disulfuros/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Selenocisteína/química , Selenoproteínas/biosíntesis , beta-Lactamasas/genética
18.
mBio ; 6(3): e00478-15, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25991684

RESUMEN

UNLABELLED: Acinetobacter baumannii is an emerging Gram-negative pathogen found in hospitals and intensive care units. In order to persist in hospital environments, A. baumannii withstands desiccative conditions and can rapidly develop multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the conserved lipid A component of the Gram-negative outer membrane to lyse the bacterial cell. However, many Gram-negative pathogenic bacteria, including A. baumannii, fortify their outer membrane with hepta-acylated lipid A to protect the cell from CAMP-dependent cell lysis. Whereas in Escherichia coli and Salmonella, increased production of the outer membrane acyltransferase PagP results in formation of protective hepta-acylated lipid A, which reinforces the lipopolysaccharide portion of the outer membrane barrier, A. baumannii does not carry a gene that encodes a PagP homolog. Instead, A. baumannii has evolved a PagP-independent mechanism to synthesize protective hepta-acylated lipid A. Taking advantage of a recently adapted A. baumannii genetic recombineering system, we characterized two putative acyltransferases in A. baumannii designated LpxLAb (A. baumannii LpxL) and LpxMAb (A. baumannii LpxM), which transfer one and two lauroyl (C12:0) acyl chains, respectively, during lipid A biosynthesis. Hepta-acylation of A. baumannii lipid A promoted resistance to vertebrate and polymyxin CAMPs, which are prescribed as last-resort treatment options. Intriguingly, our analysis also showed that LpxMAb-dependent acylation of lipid A is essential for A. baumannii desiccation survival, a key resistance mechanism for survival in hospital environments. Compounds that inhibit LpxMAb-dependent hepta-acylation of lipid A could act synergistically with CAMPs to provide innovative transmission prevention strategies and treat multidrug-resistant infections. IMPORTANCE: Acinetobacter baumannii infections can be life threatening, and disease can progress in a variety of host tissues. Current antibiotic regimen and disinfectant strategies have failed to limit nosocomial A. baumannii infections. Instead, the rate of A. baumannii infection among health care communities has skyrocketed due to the bacterium's adaptability. Its aptitude for survival over extended periods on inanimate objects, such as catheters, respirators, and surfaces in intensive care units, or on the hands of health care workers and its ability to rapidly develop antibiotic resistance make A. baumannii a threat to health care communities. Emergence of multidrug- and extremely drug-resistant A. baumannii illustrates the ineffectiveness of current prevention and treatment options. Our analysis to understand how A. baumannii resists cationic antimicrobial peptide (CAMP)-mediated and desiccative killing revealed two lipid A acyltransferases that produce protective hepta-acylated lipid A. Our work suggests that inhibiting lipid A biosynthesis by targeting the acyltransferase LpxMAb (A. baumannii LpxM) could provide a novel target to combat this pathogen.


Asunto(s)
Acinetobacter baumannii/metabolismo , Aciltransferasas/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/metabolismo , Lípido A/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidad , Acilación , Aciltransferasas/genética , Proteínas Bacterianas/genética , Desecación , Farmacorresistencia Bacteriana , Humanos , Viabilidad Microbiana , Polimixinas/farmacología
19.
J Chromatogr A ; 1217(11): 1742-7, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20138283

RESUMEN

Triclocarban is an antimicrobial and antibacterial agent found in personal care products and subsequently is a prevalent wastewater contaminant. A quantitative method was developed for the analysis of triclocarban in wastewater effluents using stir bar sorptive extraction-liquid desorption (SBSE-LD) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) by means of an electrospray interface. A stir bar coated with polydimethylsiloxane (PDMS) is placed within a vial containing wastewater effluent and is stirred for an hour at room temperature. The PDMS stir bar is then placed in a LC vial containing methanol and is desorbed in a sonicator bath. The methanol is evaporated to dryness and reconstituted in 75% methanol. Spike and recovery experiments in groundwater that did not contain native concentrations of triclocarban were performed at 0.5 microg/L and were 93+/-8%. Recoveries in wastewater effluent that were corrected for the background levels of triclocarban were 92+/-2% and 96+/-5%, respectively, when spiked with 0.5 and 5 microg/L of triclocarban. The precision of the method as indicated by the relative standard error was 2%. The limit of quantitation was 10 ng/L. The SBSE-LD-LC/MS/MS method was applied to wastewater effluent samples collected from northeast Ohio. Triclocarban was quantitated in all five effluent samples, and its concentration ranged from 50 to 330 ng/L. The described method demonstrates a simple, green, low-sample volume, yet, sensitive method to measure triclocarban in aqueous matrices.


Asunto(s)
Carbanilidas/análisis , Fraccionamiento Químico/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA