Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367605

RESUMEN

Enzymopathy disorders are the result of missing or defective enzymes. Among these enzymopathies, mucopolysaccharidosis type I is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), which ultimately causes toxic buildup of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T (Tm) cells migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm cells as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm cells leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm cells take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS, although only minimal improved cognition was observed. Our study indicates that genetically engineered Tm cells hold great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

2.
J Biol Chem ; 296: 100412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581112

RESUMEN

The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF's precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein-protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA's enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a-DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.


Asunto(s)
Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Células HEK293 , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Péptidos/fisiología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología
3.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077152

RESUMEN

Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies.


Asunto(s)
Sistemas CRISPR-Cas , Ribonucleasas , Sistemas CRISPR-Cas/genética , Endorribonucleasas/genética , Edición Génica , Técnicas de Inactivación de Genes , Ingeniería Genética , Humanos , Monocitos , ARN Mensajero/genética , Ribonucleasas/genética
4.
Mol Ther Methods Clin Dev ; 32(2): 101253, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38764780

RESUMEN

CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs. Existing plasmid-based reporters lack flexibility, being fixed to specific DNA sequences, hindering direct comparisons between various editing approaches. To address this, we developed the versatile genome editing application reporter (V-GEAR) system. V-GEAR comprises genes detectable after desired editing via base editing, prime editing, or homology-directed repair within relevant genomic contexts. It employs a detectable synthetic cell surface protein (RQR8) followed by a customizable target sequence resembling genomic regions of interest. These genes allow for reliable identification of corrective editing and cell enrichment. We validated the V-GEAR system with base editors, prime editors, and Cas9-mediated homology-directed repair. Furthermore, the V-GEAR system offers versatility by allowing transient screening or stable integration at the AAVS1 safe harbor loci, rapidly achieved through immunomagnetic isolation. This innovative system enables direct comparisons among editing technologies, accelerating the development and testing of genome editing approaches.

5.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712248

RESUMEN

Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T cells (Tm) migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS. Our study indicates that genetically engineered Tm holds great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

6.
Cells ; 9(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397211

RESUMEN

We engineered a concatenated fluorescent biosensor and dual-wavelength fluorescence lifetime (FLT) detection, to perform high-throughput screening (HTS) in living cells for discovery of potential heart-failure drugs. Heart failure is correlated with insufficient activity of the sarcoplasmic reticulum Ca-pump (SERCA2a), often due to excessive inhibition by phospholamban (PLB), a small transmembrane protein. We sought to discover small molecules that restore SERCA2a activity by disrupting this inhibitory interaction between PLB and SERCA2a. Our approach was to fluorescently tag the two proteins and measure fluorescence resonance energy transfer (FRET) to detect changes in binding or structure of the complex. To optimize sensitivity to these changes, we engineered a biosensor that concatenates the two fluorescently labeled proteins on a single polypeptide chain. This SERCA2a-PLB FRET biosensor construct is functionally active and effective for HTS. By implementing 2-wavelength FLT detection at extremely high speed during primary HTS, we culled fluorescent compounds as false-positive Hits. In pilot screens, we identified Hits that alter the SERCA2a-PLB interaction, and a newly developed secondary calcium uptake assay revealed both activators and inhibitors of Ca-transport. We are implementing this approach for large-scale screens to discover new drug-like modulators of SERCA2a-PLB interactions for heart failure therapeutic development.


Asunto(s)
Calcio/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Miocardio/citología , Miocardio/metabolismo , Transporte Biológico , Técnicas Biosensibles , Proteínas de Unión al Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Especificidad de Órganos , Proteínas Recombinantes de Fusión/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
7.
Biosensors (Basel) ; 8(4)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352972

RESUMEN

We have developed fluorescence resonance energy transfer (FRET) biosensors with red-shifted fluorescent proteins (FP), yielding improved characteristics for time-resolved (lifetime) fluorescence measurements. In comparison to biosensors with green and red FRET pairs (GFP/RFP), FPs that emit at longer wavelengths (orange and maroon, OFP/MFP) increased the FRET efficiency, dynamic range, and signal-to-background of high-throughput screening (HTS). OFP and MFP were fused to specific sites on the human cardiac calcium pump (SERCA2a) for detection of structural changes due to small-molecule effectors. When coupled with a recently improved HTS fluorescence lifetime microplate reader, this red-shifted FRET biosensor enabled high-precision nanosecond-resolved fluorescence decay measurements from microliter sample volumes at three minute read times per 1536-well-plate. Pilot screens with a library of small-molecules demonstrate that the OFP/MFP FRET sensor substantially improves HTS assay quality. These high-content FRET methods detect minute FRET changes with high precision, as needed to elucidate novel structural mechanisms from small-molecule or peptide regulators discovered through our ongoing HTS efforts. FRET sensors that emit at longer wavelengths are highly attractive to the FRET biosensor community for drug discovery and structural interrogation of new therapeutic targets.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA