Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33259802

RESUMEN

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Glioma/genética , Histonas/genética , Interneuronas/metabolismo , Mutación/genética , Células-Madre Neurales/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Linaje de la Célula , Reprogramación Celular/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glioma/patología , Histonas/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Clasificación del Tumor , Oligodendroglía/metabolismo , Regiones Promotoras Genéticas/genética , Prosencéfalo/embriología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transcripción Genética , Transcriptoma/genética
2.
Nature ; 574(7780): 707-711, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31664194

RESUMEN

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Asunto(s)
Neoplasias Cerebelosas/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , ARN Nuclear Pequeño/genética , Adolescente , Adulto , Empalme Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutación , Sitios de Empalme de ARN , Empalme del ARN
3.
Ideggyogy Sz ; 76(1-2): 46-50, 2023 Jan 30.
Artículo en Húngaro | MEDLINE | ID: mdl-36892296

RESUMEN

Background and purpose – Interdiscipli­ nary researches demonstrate that patients’ fears and anxieties about surgery play a key role in the success of postoperative recovery. Psychoeducation is a professional information transfer method that aims to increase patients’ knowledge about their dis­ ease, and how to cope with it, and to emo­ tionally process the problems associated with the disease. If patients feel competent in their own healing process after surgery, they will experience less pain and become self­sufficient sooner, thereby the number of nursing days spent in the clinic reduces.
Methods – In this study the effect of psycho-education before spinal surgery on the use of postoperative analgetics was investigated. Results – The drug consumption of the study group who had been previously administered patient education is significantly reduced in comparison the control group.
Conclusion – Cooperation of a psychologist in surgical therapy promotes early recovery of patients in physical and mental well­being and reduces the costs of rehabilitation as well.

.

4.
Mol Cell Probes ; 66: 101875, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36379303

RESUMEN

Glioblastoma is the most common malignant tumor of the central nervous system (CNS) in adults. Glioblastoma cells show increased glucose consumption associated with poor prognosis. Since mitochondria play a crucial role in energy metabolism, mutations and copy number changes of mitochondrial DNA may serve as biomarkers. As the brain is difficult to access, analysis of mitochondria directly from the brain tissue represents a challenge. Exosome analysis is an alternative (still poorly explored) approach to investigate molecular changes in CNS tumors. We analyzed brain tissue DNA and plasma-derived exosomal DNA (exoDNA) of 44 glioblastoma patients and 40 control individuals. Quantitative real-time PCR was performed to determine mtDNA copy numbers and the Kruskal-Wallis and Mann-Whitney U test were used for statistical analysis of data. Subsequently, sequencing libraries were prepared and sequenced on the MiSeq platform to identify mtDNA point mutations. Tissue mtDNA copy number was different among controls and patients in multiple comparisons. A similar tendency was detected in exosomes. Based on NGS analysis, several mtDNA point mutations showed slightly different frequencies between cases and controls, but the clinical relevance of these observations is difficult to assess and likely less than that of overall mtDNA copy number changes. Allele frequencies of variants were used to determine the level of heteroplasmy (found to be higher in exo-mtDNA of control individuals). Despite the suggested potential, the use of such biomarkers for the screening and/or diagnosis of glioblastomas is still limited, thus further studies are needed.


Asunto(s)
Exosomas , Glioblastoma , Adulto , Humanos , Variaciones en el Número de Copia de ADN/genética , Glioblastoma/genética , Heteroplasmia , Exosomas/genética , ADN Mitocondrial/genética , ADN Mitocondrial/análisis , Mitocondrias/genética , Mutación/genética , Encéfalo
5.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576168

RESUMEN

Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.


Asunto(s)
Glioblastoma/terapia , Glioma/terapia , Anciano , Biomarcadores de Tumor/sangre , Encéfalo/metabolismo , Neoplasias Encefálicas/sangre , Epigénesis Genética/genética , Exosomas/metabolismo , Femenino , Humanos , Inmunoterapia , Biopsia Líquida/métodos , Masculino , Persona de Mediana Edad , Ácidos Nucleicos/sangre , Pronóstico
6.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064637

RESUMEN

(1) Background: Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis. Treatment options are limited, clinicians lack efficient prognostic and predictive markers. Circulating miRNAs-besides being important regulators of cancer development-may have potential as diagnostic biomarkers of GBM. (2) Methods: In this study, profiling of 798 human miRNAs was performed on blood plasma samples from 6 healthy individuals and 6 patients with GBM, using a NanoString nCounter Analysis System. To validate our results, five miRNAs (hsa-miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly chosen for RT-qPCR detection. (3) Results: In all, 53 miRNAs were significantly differentially expressed in plasma samples of GBM patients when data were filtered for FC 1 and FDR 0.1. Target genes of the top 39 differentially expressed miRNAs were identified, and we carried out functional annotation and pathway enrichment analysis of target genes via GO and KEGG-based tools. General and cortex-specific protein-protein interaction networks were constructed from the target genes of top miRNAs to assess their functional connections. (4) Conclusions: We demonstrated that plasma microRNA profiles are promising diagnostic and prognostic molecular biomarkers that may find an actual application in the clinical practice of GBM, although more studies are needed to validate our results.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Glioblastoma/patología , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , MicroARN Circulante/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Glioblastoma/sangre , Humanos , Pronóstico , Mapas de Interacción de Proteínas
7.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053907

RESUMEN

: Glioblastoma is a primary Central Nervous System (CNS) malignancy with poor survival. Treatment options are scarce and despite the extremely heterogeneous nature of the disease, clinicians lack prognostic and predictive markers to characterize patients with different outcomes. Certain immunohistochemistry, FISH, or PCR-based molecular markers, including isocitrate dehydrogenase1/2 (IDH1/2) mutations, epidermal growth factor receptor variant III (EGFRvIII) mutation, vascular endothelial growth factor overexpression (VEGF) overexpression, or (O6-Methylguanine-DNA methyltransferase promoter) MGMT promoter methylation status, are well-described; however, their clinical usefulness and accuracy is limited, and tumor tissue samples are always necessary. Liquid biopsy is a developing field of diagnostics and patient follow up in multiple types of cancer. Fragments of circulating nucleic acids are collected in various forms from different bodily fluids, including serum, urine, or cerebrospinal fluid in order to measure the quality and quantity of these markers. Multiple types of nucleic acids can be analyzed using liquid biopsy. Circulating cell-free DNA, mitochondrial DNA, or the more stable long and small non-coding RNAs, circular RNAs, or microRNAs can be identified and measured by novel PCR and next-generation sequencing-based methods. These markers can be used to detect the previously described alterations in a minimally invasive method. These markers can be used to differentiate patients with poor or better prognosis, or to identify patients who do not respond to therapy. Liquid biopsy can be used to detect recurrent disease, often earlier than using imaging modalities. Liquid biopsy is a rapidly developing field, and similarly to other types of cancer, measuring circulating tumor-derived nucleic acids from biological fluid samples could be the future of differential diagnostics, patient stratification, and follow up in the future in glioblastoma as well.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central/diagnóstico , Glioblastoma/diagnóstico , Biopsia Líquida , Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central/etiología , Neoplasias del Sistema Nervioso Central/metabolismo , ADN de Neoplasias , Susceptibilidad a Enfermedades , Vesículas Extracelulares , Glioblastoma/etiología , Glioblastoma/metabolismo , Humanos , Biopsia Líquida/métodos , Biopsia Líquida/normas , Células Neoplásicas Circulantes
8.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731530

RESUMEN

Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were obtained from four patient groups, namely glioblastoma multiforme (GBM), non-small-cell lung cancer brain metastasis (BM), meningioma (M) and lumbar disc hernia patients (CTRL). After the isolation and characterization of small extracellular vesicles (sEVs) by nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM), liquid chromatography -mass spectrometry (LC-MS) was performed on two different sample types (whole serum and serum sEVs). Statistical analyses (ratio, Cohen's d, receiver operating characteristic; ROC) were carried out to compare patient groups. To recognize differences between the two sample types, pairwise comparisons (Welch's test) and ingenuity pathway analysis (IPA) were performed. According to our knowledge, this is the first study that compares the proteome of whole serum and serum-derived sEVs. From the 311 proteins identified, 10 whole serum proteins and 17 sEV proteins showed the highest intergroup differences. Sixty-five proteins were significantly enriched in sEV samples, while 129 proteins were significantly depleted compared to whole serum. Based on principal component analysis (PCA) analyses, sEVs are more suitable to discriminate between the patient groups. Our results support that sEVs have greater potential to monitor CNS tumors, than whole serum.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/sangre , Neoplasias Meníngeas , Proteínas de Neoplasias/sangre , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Neoplasias Meníngeas/sangre , Neoplasias Meníngeas/secundario , Persona de Mediana Edad
9.
Ideggyogy Sz ; 73(9-10): 317-325, 2020 Sep 30.
Artículo en Húngaro | MEDLINE | ID: mdl-33035418

RESUMEN

BACKGROUND AND PURPOSE: Glioblastoma is the most common malignant CNS tumor, its surgical removal is hindered by the tumors invasive nature, while current anti-tumor therapies show limited effectiveness - mean overall survival is 16-24 months. Some patients show minimal response towards standard oncotherapy, however there are no routinely available prognostic and predictive markers in clinical practice to identify the background of mentioned differences in prognosis. This research aims to identify the prognostic significance of invasion-related extracellular (ECM) components. METHODS: Patient groups with different prognoses were created (OS: group A <16 months, group B > 16 months), and internationally recognized prognostic markers (IDH1 mutation and MGMT promoter hyper-methylation) were tested in the flash-frozen tumor samples. Furthermore, the mRNA levels of 46 invasion-related ECM molecules were measured. RESULTS: Clinical data of the patients who have been operated on at the University of Debrecen Clinical Center Department of Neurosurgery and treated at the Department of Clinical Oncology showed no significant differences except for survival data (OS and PFS), and reoperation rate. All samples were IDH wild type. MGMT promoter hypermethylation rate showed significant differences (28.6% vs 68.8%). The expressional pattern of the invasion-related ECM molecules, i.e. the invasion spectrum also showed major differences, integrin ß2, cadherin-12, FLT4/VEGFR-3 and versican molecules having signficantly different mRNA levels. The accuracy of the inivasion spectrum was tested by statistical classifier, 83.3% of the samples was sorted correctly, PPV was 0.93. CONCLUSION: The difference found in the reoperation rate when comparing different prognostic groups aligns with literature data. MGMG promoter region methylation data in Hungarian samples has not been published yet, and further confirming current knowledge urges the implementation of MGMT promoter analysis in clinical practice. Studying the invasion spectrum provides extra information on tumors, as a prognostic marker it helps recognizing more aggressive tumors, and calls attention to the necessity of using anti-invasive agents in GBM therapies in the future.


Asunto(s)
Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/fisiopatología , Isocitrato Deshidrogenasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Biomarcadores de Tumor/metabolismo , Glioblastoma/metabolismo , Glioblastoma/cirugía , Humanos , Pronóstico , ARN Mensajero
10.
Acta Neuropathol ; 136(2): 227-237, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30019219

RESUMEN

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Ependimoma/clasificación , Ependimoma/genética , Neoplasias Infratentoriales/clasificación , Neoplasias Infratentoriales/genética , Adolescente , Adulto , Factores de Edad , Niño , Estudios de Cohortes , Metilación de ADN/genética , Ependimoma/patología , Ependimoma/cirugía , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Infratentoriales/patología , Neoplasias Infratentoriales/cirugía , Estimación de Kaplan-Meier , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Adulto Joven
11.
Cancer Invest ; 36(9-10): 492-503, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30501525

RESUMEN

Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.

12.
Nature ; 482(7384): 226-31, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286061

RESUMEN

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Glioblastoma/genética , Histonas/genética , Mutación/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Niño , Cromatina/metabolismo , Proteínas Co-Represoras , ADN Helicasas/genética , Análisis Mutacional de ADN , Exoma/genética , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Telómero/genética , Proteína p53 Supresora de Tumor/genética , Proteína Nuclear Ligada al Cromosoma X
13.
Stem Cells ; 33(3): 726-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25388207

RESUMEN

Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regulated gene expression and cellular specification in a multistage neuronal differentiation model of murine ESCs. PRMT1 acts as a selective modulator, providing the cells with a mechanism to reduce the potency of retinoid signals on regulatory "hotspots." PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional coactivator of retinoid signaling at later stages of differentiation. Lack of either of them leads to reduced nuclear arginine methylation, dysregulated neuronal gene expression, and altered neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid signaling to determine neuronal cell specification in a context-dependent manner and might also be relevant in the development of human brain malignancy.


Asunto(s)
Células Madre Embrionarias/citología , Neuronas/citología , Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores de Ácido Retinoico/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Expresión Génica , Glioblastoma , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal
14.
Lancet Oncol ; 16(5): 569-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25882982

RESUMEN

BACKGROUND: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS: We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS: Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION: An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING: C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Genómica , Receptores Notch/biosíntesis , Tumor Rabdoide/genética , Teratoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Lactante , Masculino , Pronóstico , Receptores Notch/genética , Tumor Rabdoide/patología , Factores de Riesgo , Transducción de Señal/genética , Teratoma/patología
15.
Acta Neuropathol ; 125(5): 659-69, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23417712

RESUMEN

Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Mutación/genética , Adolescente , Adulto , Factores de Edad , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Exoma , Glioma/metabolismo , Glioma/patología , Histona Metiltransferasas , Humanos , Lactante , Metilación , Persona de Mediana Edad , Clasificación del Tumor , Adulto Joven
16.
Acta Neuropathol ; 126(6): 917-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24174164

RESUMEN

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Asunto(s)
Neoplasias Encefálicas/genética , Meduloblastoma/genética , Mutación , Regiones Promotoras Genéticas , Telomerasa/genética , Adolescente , Adulto , Neoplasias Encefálicas/patología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Lactante , Masculino , Meduloblastoma/patología , Persona de Mediana Edad , Pronóstico
17.
Ideggyogy Sz ; 66(9-10): 305-11, 2013 Sep 30.
Artículo en Húngaro | MEDLINE | ID: mdl-24358685

RESUMEN

BACKGROUND: The WHO grade I. and II. low-grade gliomas represent nearly the 15% of all primary brain tumors. These tumours contain clinically, histologically and molecularly distinct tumor types. According to their histologic characteristic, grade II glial tumours are the diffuse astrocytoma, oligodendroglioma and oligoastrocytoma subgroups; ependymal tumors are not included in this study. METHODS: In our publication, we analysed the histologically diagnosed glioma cases between 2007 and 2011 at our institution. RESULTS: Low-grade gliomas were diagnosed in 127 cases (62 male / 65 female), and the mean ages were 39 years (+/- 20.3). More than half of the cancers were localized in the frontal lobe, and the second most frequent area was the temporal lobe. Finally, we complete our report with an overview of major molecular pathways in low-grade gliomas.


Asunto(s)
Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Glioma/epidemiología , Glioma/patología , Mutación , Adulto , Factores de Edad , Anciano , Astrocitoma/epidemiología , Astrocitoma/patología , Neoplasias Encefálicas/genética , Análisis Citogenético , Femenino , Eliminación de Gen , Glioma/genética , Humanos , Hungría/epidemiología , Incidencia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Oligodendroglioma/epidemiología , Oligodendroglioma/patología , Factores Sexuales
18.
Ideggyogy Sz ; 66(9-10): 312-21, 2013 Sep 30.
Artículo en Húngaro | MEDLINE | ID: mdl-24358686

RESUMEN

BACKGROUND: Glial tumours represent the most frequent type of primary brain cancers. Gliomas are characterized by heterogeneity that makes the diagnosis, histological classification and the choosing of correct therapy more difficult. Despite the advances in developing therapeutic strategies patients with malignant gliomas have a poor prognosis; therefore glial tumours represent one of the most important areas of cancer research. There are no detailed data on the epidemiology of gliomas in Hungary. METHODS: In the first section of our publication, we analysed the histological diagnosed cases between 2007 and 2011 at the Institute of Pathology, University of Debrecen Medical and Health Science Centre. We analyzed the incidence of 214 high-grade gliomas by tumor grades, gender, age, and the anatomical localization. RESULTS: The majority of cases were glioblastoma (182 cases), and the remaining 32 cases were anaplastic gliomas. The mean age of patients was 57 years (+/- 16.4), and the male:female ratio was 1.1:1. The most frequent area of tumors was the frontal lobe followed by the temporal, parietal and occipital lobe. We include new findings published recently about glioma pathogenesis, molecular pathways, mutant genes and chromosomal regions. We explain briefly the role of selected important genes in glioma genesis and give an update on knowledge provided by modern molecular methods, which could beneficially influence future therapy and the diagnosis of gliomas.


Asunto(s)
Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Glioma/epidemiología , Glioma/patología , Mutación , Adulto , Factores de Edad , Anciano , Astrocitoma/epidemiología , Astrocitoma/patología , Neoplasias Encefálicas/genética , Análisis Citogenético , Femenino , Glioblastoma/epidemiología , Glioblastoma/patología , Glioma/genética , Gliosarcoma/epidemiología , Gliosarcoma/patología , Humanos , Hungría/epidemiología , Incidencia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Oligodendroglioma/epidemiología , Oligodendroglioma/patología , Patología Molecular , Factores Sexuales
19.
Ideggyogy Sz ; 66(9-10): 337-42, 2013 Sep 30.
Artículo en Húngaro | MEDLINE | ID: mdl-24358690

RESUMEN

Herpes simplex virus encephalitis (HSVE) is a rare and life-threatening infection. The clinical signs are diverse and often misleading regarding the aetiology. However, focal seizure with fever and typical CT/MRI finding should always raise the possibility of HSVE as early diagnosis and antiviral therapy is crucial. Before the advent of molecular techniques and high-tech imaging histological examination from multiple brain biopsies were often necessary. Although nowadays PCR and other molecular methods may provide an aetiological diagnosis some cases need neuropathological verification. Due to the high IgG seropositivity rate in the population the plasma IgG titer is not diagnostic and elevation of its plasma level requires several weeks. We report the case of a 25-years old male patient who initially presented with epileptic seizures. There was no final diagnosis and no causal treatment in the district general hospital. The patient was admitted to our institution in comatose state on day 9; the initiated diagnostic tests and therapy could not save the patient who died next day. The autopsy and subsequent neuropathological examination revealed HSVE. We present a flowchart on diagnostic work-up and special techniques to aid diagnosis in suspected viral encephalitis.


Asunto(s)
Antivirales/administración & dosificación , Líquido Cefalorraquídeo/virología , Encefalitis por Herpes Simple/diagnóstico , Encefalitis por Herpes Simple/tratamiento farmacológico , Simplexvirus/aislamiento & purificación , Lóbulo Temporal/virología , Adulto , Algoritmos , Hemorragia Cerebral/virología , Diagnóstico Tardío , Diagnóstico Diferencial , Encefalitis por Herpes Simple/complicaciones , Encefalitis por Herpes Simple/patología , Resultado Fatal , Fiebre/virología , Humanos , Inmunohistoquímica , Comunicación Interdisciplinaria , Imagen por Resonancia Magnética , Masculino , Necrosis/virología , Reacción en Cadena de la Polimerasa , Convulsiones/virología , Simplexvirus/inmunología , Lóbulo Temporal/patología , Factores de Tiempo
20.
Magy Onkol ; 57(4): 222-31, 2013 Dec.
Artículo en Húngaro | MEDLINE | ID: mdl-24353987

RESUMEN

The usual local recurrence of primary brain tumors is mainly due to the infiltration of adjacent brain parenchyma by the glioma cells. This invasive feature of the tumors makes total surgical excision impossible and also decreases the efficacy of focal radiotherapy. Interestingly, intracerebral metastases originating from many anaplastic tumors of other organs perform very moderate peritumoral infiltration, therefore radical resection can be routinely achieved and focal irradiation, even stereotactic radiotherapy, provides good tumor control. Differences in the effectiveness of treatment between the two tumor types derive from the remarkably different extent of peritumoral infiltration. Thus significant molecular biological research has been dealing with the infiltrative activity of various brain tumors and many attempts were made to develop anti-invasive drugs for oncotherapy. This review summarizes the results of these studies, describing cellular and molecular events of brain tumor invasion and according potential oncotherapeutic possibilities.


Asunto(s)
Neoplasias Encefálicas/patología , Matriz Extracelular/patología , Glioma/patología , Antineoplásicos/farmacología , Humanos , Invasividad Neoplásica , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA