Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(3): 780-792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972740

RESUMEN

BACKGROUND: Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE: We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS: Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS: At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS: Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.


Asunto(s)
Enteritis , Eosinofilia , Esofagitis Eosinofílica , Hipersensibilidad a los Alimentos , Gastritis , Adulto , Humanos , Mucosa Esofágica , Alérgenos , Hipersensibilidad a los Alimentos/genética , Perfilación de la Expresión Génica
2.
Allergy ; 77(5): 1510-1521, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458999

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is a food allergen driven disease that is accompanied by interleukin (IL) 13 overexpression and esophageal barrier dysfunction allowing transepithelial food allergen permeation. Nutraceuticals, such as short-chain fatty acids (SCFAs) that restore barrier function and increase immune fitness may be a promising tool in the management of EoE. Here, we investigated the effects of the SCFAs acetate, propionate, and butyrate on an IL-13-compromised human esophageal epithelial barrier, including the mechanisms involved. METHODS: An air-liquid interface culture model of differentiated human EPC2-hTERT (EPC2) was used to study whether SCFAs could restore barrier function after IL-13-induced impairment. Esophageal epithelial barrier function was monitored by transepithelial electrical resistance (TEER) and FITC-dextran paracellular flux, and was further examined by qPCR and immunohistochemical analysis. G protein-coupled receptor (GPR) GPR41, GPR43, GPR109a, or histone deacetylase (HDAC) (ant)agonists were used to assess mechanisms of action of SCFAs. RESULTS: IL-13 stimulation decreased TEER and increased FITC flux, which was counteracted by butyrate and propionate, but not acetate treatment. Barrier proteins FLG and DSG1 mRNA expression was upregulated following butyrate and propionate treatment, whereas expression of eosinophil chemoattractant CCL26 and protease CAPN14 was downregulated. Similarly, butyrate and propionate restored FLG and DSG1 protein expression. Similar effects were observed with an HDAC antagonist but not with GPR agonists. CONCLUSION: Nutraceuticals butyrate and propionate restore the barrier function of esophageal epithelial cells after an inflammatory insult and may be of therapeutic benefit in the management of EoE.


Asunto(s)
Esofagitis Eosinofílica , Interleucina-13 , Alérgenos/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico , Esofagitis Eosinofílica/tratamiento farmacológico , Ácidos Grasos Volátiles/farmacología , Humanos , Interleucina-13/metabolismo , Propionatos/farmacología
4.
Ann Allergy Asthma Immunol ; 121(3): 306-312, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29966703

RESUMEN

OBJECTIVE: The aim of this review is to provide an overview of the current knowledge on the mechanisms of allergen immunotherapy based on the recent publications and clinical trials. DATA SOURCES: PubMed literature review. STUDY SELECTIONS: In this review, we focus on diverse mechanisms of AIT and provide an insight into alternative routes of administration. Additionally, we review and discuss the most recent studies investigating potential biomarkers and highlight their role in clinical settings. RESULTS: Successful allergen-specific immunotherapy (AIT) induces the reinstatement of tolerance toward allergens and represents a disease-modifying treatment. In the last decades, substantial progress in understanding the mechanisms of AIT has been achieved. Establishment of long-term clinical tolerance to allergens engages a complex network of interactions, modulating the functions of basophils, mast cells, allergen-specific regulatory T and B cells, and production of specific antibodies. The reduction of symptoms and clinical improvement is achieved by skewing the immune response away from allergic inflammation. CONCLUSION: Although the complex nature of AIT mechanisms is becoming more clear, the need to discover reliable biomarkers to define patients likely to respond to the treatment is emerging.


Asunto(s)
Alérgenos/administración & dosificación , Alérgenos/uso terapéutico , Desensibilización Inmunológica/métodos , Tolerancia Inmunológica/inmunología , Venenos de Artrópodos/inmunología , Asma/terapia , Linfocitos B Reguladores/inmunología , Antígeno CTLA-4/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Hipersensibilidad a los Alimentos/terapia , Humanos , Interleucina-10/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Rinitis Alérgica/terapia , Linfocitos T Reguladores/inmunología
5.
Mucosal Immunol ; 16(5): 567-577, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37302713

RESUMEN

Mast cells (MCs) accumulate in the epithelium of patients with eosinophilic esophagitis (EoE), an inflammatory disorder characterized by extensive esophageal eosinophilic infiltration. Esophageal barrier dysfunction plays an important role in the pathophysiology of EoE. We hypothesized that MCs contribute to the observed impaired esophageal epithelial barrier. Herein, we demonstrate that coculture of differentiated esophageal epithelial cells with immunoglobulin E-activated MCs significanly decreased epithelial resistance by 30% and increased permeability by 22% compared with non-activated MCs. These changes were associated with decreased messenger RNA expression of barrier proteins filaggrin, desmoglein-1 and involucrin, and antiprotease serine peptidase inhibitor kazal type 7. Using targeted proteomics, we detected various cytokines in coculture supernatants, most notably granulocyte-macrophage colony-stimulating factor and oncostatin M (OSM). OSM expression was increased by 12-fold in active EoE and associated with MC marker genes. Furthermore, OSM receptor-expressing esophageal epithelial cells were found in the esophageal tissue of patients with EoE, suggesting that the epithelial cells may respond to OSM. Stimulation of esophageal epithelial cells with OSM resulted in a dose-dependent decrease in barrier function and expression of filaggrin and desmoglein-1 and an increase in protease calpain-14. Taken together, these data suggest a role for MCs in decreasing esophageal epithelial barrier function in EoE, which may in part be mediated by OSM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA