RESUMEN
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients' poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Resistencia a Antineoplásicos/genética , Proteínas con Dominio LIM/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Taxoides/uso terapéutico , Factores de Transcripción/genética , Animales , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Paclitaxel/uso terapéuticoRESUMEN
Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Asunto(s)
Neoplasias , Oxiesteroles , Biomarcadores , Humanos , Sistema Inmunológico , Inmunoterapia , Neoplasias/tratamiento farmacológicoRESUMEN
Oxygenated metabolites of cholesterol (oxysterols) have been previously demonstrated to contribute to progression of various cancers and to modulate resistance to breast cancer endocrine therapy in vitro. We measured prognostic roles of circulating levels of seven major oxysterols in the progression of luminal subtype breast carcinoma. Liquid chromatography coupled with tandem mass spectrometry was used for determination of levels of non-esterified 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7-ketocholesterol, cholesterol-5α,6α-epoxide, cholesterol-5ß,6ß-epoxide, and cholestane-3ß,5α,6ß-triol in plasma samples collected from patients (nâ¯=â¯58) before surgical removal of tumors. Oxysterol levels were then associated with clinical data of patients. All oxysterols except cholesterol-5α,6α-epoxide were detected in patient plasma samples. Circulating levels of 7α-hydroxycholesterol and 27-hydroxycholesterol were significantly lower in patients with small tumors (pT1) and cholesterol-5ß,6ß-epoxide and cholestane-3ß,5α,6ß-triol were lower in patients with stage IA disease compared to larger tumors or more advanced stages. Patients with higher than median cholestane-3ß,5α,6ß-triol levels had significantly worse disease-free survival than patients with lower levels (pâ¯=â¯0.037 for all patients and pâ¯=â¯0.015 for subgroup treated only with tamoxifen). In conclusion, this study shows, for the first time, that circulating levels of oxysterols, especially cholestane-3ß,5α,6ß-triol, may have prognostic roles in patients with luminal subtype breast cancer.