Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 279(2): 1090-9, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14576149

RESUMEN

In all three kingdoms of life chaperonins assist the folding of a range of newly synthesized proteins. As shown recently, Archaea of the genus Methanosarcina contain both group I (GroEL/GroES) and group II (thermosome) chaperonins in the cytosol. Here we report on a detailed functional analysis of the archaeal GroEL/GroES system of Methanosarcina mazei (Mm) in comparison to its bacterial counterpart from Escherichia coli (Ec). We find that the groESgroEL operon of M. mazei is unable to functionally replace groESgroEL in E. coli. However, the MmGroES protein can largely complement a mutant EcGroES protein in vivo. The ATPase rate of MmGroEL is very low and the dissociation of MmGroES from MmGroEL is 15 times slower than for the EcGroEL/GroES system. This slow ATPase cycle results in a prolonged enclosure time for model substrate proteins, such as rhodanese, in the MmGroEL:GroES folding cage before their release into the medium. Interestingly, optimal functionality of MmGroEL/GroES and its ability to encapsulate larger proteins, such as malate dehydrogenase, requires the presence of ammonium sulfate in vitro. In the absence of ammonium sulfate, malate dehydrogenase fails to be encapsulated by GroES and rather cycles on and off the GroEL trans ring in a non-productive reaction. These results indicate that the archaeal GroEL/GroES system has preserved the basic encapsulation mechanism of bacterial GroEL and suggest that it has adjusted the length of its reaction cycle to the slower growth rates of Archaea. Additionally, the release of only the folded protein from the GroEL/GroES cage may prevent adverse interactions of the GroEL substrates with the thermosome, which is not normally located within the same compartment.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Adenosina Trifosfatasas/química , Sulfato de Amonio/química , Archaea/metabolismo , Bacteriófagos/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Chaperoninas/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Prueba de Complementación Genética , Malato Deshidrogenasa/química , Methanosarcina/metabolismo , Mutación , Unión Proteica , Pliegue de Proteína , Resonancia por Plasmón de Superficie , Tiosulfato Azufretransferasa/química , Factores de Tiempo
2.
J Biol Chem ; 278(35): 33256-67, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12796498

RESUMEN

Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei Gö1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, alpha, beta, and gamma, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg2+ or ADP/Mg2+ and the regulatory role of the beta subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.


Asunto(s)
Methanosarcina/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Archaea , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Clonación Molecular , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Calor , Concentración de Iones de Hidrógeno , Immunoblotting , Luz , Magnesio/metabolismo , Microscopía Electrónica , Modelos Genéticos , Datos de Secuencia Molecular , Pruebas de Precipitina , Regiones Promotoras Genéticas , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Dispersión de Radiación , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiosulfato Azufretransferasa/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA