Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 287(19): 15602-9, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22433857

RESUMEN

Primary cilia are microtubule-based solitary membrane projections on the cell surface that play important roles in signaling and development. Recent studies have demonstrated that polarized vesicular trafficking involving the small GTPase Rab8 and its guanine nucleotide exchange factor Rabin8 is essential for primary ciliogenesis. In this study, we show that a highly conserved region of Rabin8 is pivotal for its activation as a guanine nucleotide exchange factor for Rab8. In addition, in its activated conformation, Rabin8 interacts with Sec15, a subunit of the exocyst and downstream effector of Rab8. Expression of constitutively activated Rab8 promotes the association of Sec15 with Rabin8. Using immunofluorescence microscopy, we found that Sec15 co-localized with Rab8 along the primary cilium. Inhibition of Sec15 function in cells led to defects in primary ciliogenesis. The Rabin8-Rab8-Sec15 interaction may couple the activation of Rab8 to the recruitment of the Rab8 effector and is involved in the regulation of vesicular trafficking for primary cilium formation.


Asunto(s)
Cilios/fisiología , Proteínas de Unión al GTP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Línea Celular , Cilios/genética , Cilios/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas de Unión al GTP/genética , Quinasas del Centro Germinal , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rab/genética
2.
Proc Natl Acad Sci U S A ; 107(14): 6346-51, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308558

RESUMEN

Primary cilia are microtubule-based membrane projections located at the surface of many cells. Defects in primary cilia formation have been implicated in a number of genetic disorders, such as Bardet-Biedl Syndrome and Polycystic Kidney Disease. Recent studies have demonstrated that polarized vesicular transport involving Rab8 and its guanine nucleotide-exchange factor Rabin8 is essential for primary ciliogenesis. Here we report that Rabin8 is a direct downstream effector of Rab11, which functions in membrane trafficking from the trans-Golgi network and recycling endosomes. Rab11, in its GTP-bound form, interacts with Rabin8 and kinetically stimulates the guanine nucleotide-exchange activity of Rabin8 toward Rab8. Rab11 is enriched at the base of the primary cilia and inhibition of Rab11 function by a dominant-negative mutant or RNA interference blocks primary ciliogenesis. Our results suggest that Rab GTPases coordinate with each other in the regulation of vesicular trafficking during primary ciliogenesis.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Línea Celular , Cilios/metabolismo , Endosomas/metabolismo , Quinasas del Centro Germinal , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab/genética , Red trans-Golgi/metabolismo
3.
J Biol Chem ; 285(14): 10424-33, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20139078

RESUMEN

The exocyst is an evolutionarily conserved octameric complex involved in polarized exocytosis from yeast to humans. The Sec3 subunit of the exocyst acts as a spatial landmark for exocytosis through its ability to bind phospholipids and small GTPases. The structure of the N-terminal domain of Sec3 (Sec3N) was determined ab initio and defines a new subclass of pleckstrin homology (PH) domains along with a new family of proteins carrying this domain. Respectively, N- and C-terminal to the PH domain Sec3N presents an additional alpha-helix and two beta-strands that mediate dimerization through domain swapping. The structure identifies residues responsible for phospholipid binding, which when mutated in cells impair the localization of exocyst components at the plasma membrane and lead to defects in exocytosis. Through its ability to bind the small GTPase Cdc42 and phospholipids, the PH domain of Sec3 functions as a coincidence detector at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Dimerización , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fosfolípidos/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
4.
J Cell Biol ; 168(2): 185-91, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657391

RESUMEN

The integral membrane lipid phosphatase Sac1p regulates local pools of phosphatidylinositol-4-phosphate (PtdIns(4)P) at endoplasmic reticulum (ER) and Golgi membranes. PtdIns(4)P is important for Golgi trafficking, yet the significance of PtdIns(4)P for ER function is unknown. It also remains unknown how localization of Sac1p to distinct organellar membranes is mediated. Here, we show that a COOH-terminal region in yeast Sac1p is crucial for ER targeting by directly interacting with dolicholphosphate mannose synthase Dpm1p. The interaction with Dpm1p persists during exponential cell division but is rapidly abolished when cell growth slows because of nutrient limitation, causing translocation of Sac1p to Golgi membranes. Cell growth-dependent shuttling of Sac1p between the ER and the Golgi is important for reciprocal control of PtdIns(4)P levels at these organelles. The fraction of Sac1p resident at the ER is also required for efficient dolichol oligosaccharide biosynthesis. Thus, the lipid phosphatase Sac1p may be a key regulator, coordinating the secretory capacity of ER and Golgi membranes in response to growth conditions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Manosiltransferasas/fisiología , Proteínas de la Membrana/fisiología , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Western Blotting , Catepsina A/metabolismo , División Celular , Centrifugación por Gradiente de Densidad , Glucosa/deficiencia , Glicosilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/análisis , Proteínas de Choque Térmico/análisis , Membranas Intracelulares/química , Manosa/metabolismo , Manosiltransferasas/análisis , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Microscopía Fluorescente , Microsomas/química , Mutación , Oligosacáridos/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transformación Genética , Proteínas de Transporte Vesicular/análisis
5.
BMC Mol Biol ; 9: 16, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-18226253

RESUMEN

BACKGROUND: Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. RESULTS: Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4)P) concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR) of SAC1 that is responsible for PI(4)P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. CONCLUSION: Regulation of Sac1p expression via the concentration of its major substrate PI(4)P ensures proper maintenance of compartment-specific pools of PI(4)P.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Regiones no Traducidas 5'/genética , Regiones no Traducidas 5'/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Monoéster Fosfórico Hidrolasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
J Cell Biol ; 180(4): 803-12, 2008 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-18299350

RESUMEN

When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I-mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor-induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery.


Asunto(s)
Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Inhibidores Enzimáticos/farmacología , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Mitógenos/farmacología , Células 3T3 NIH , Transporte de Proteínas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Traffic ; 8(11): 1554-67, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17908202

RESUMEN

Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/fisiología , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Transporte Biológico , Reactivos de Enlaces Cruzados/química , Retículo Endoplásmico/metabolismo , Genotipo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutagénesis , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA