Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Virol ; 97(6): e0026223, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37289055

RESUMEN

Herpes simplex virus 1 (HSV-1) must overcome epidermal barriers to reach its receptors on keratinocytes and initiate infection in human skin. The cell-adhesion molecule nectin-1, which is expressed in human epidermis, acts as an efficient receptor for HSV-1 but is not within reach of the virus upon exposure of human skin under nonpathological conditions. Atopic dermatitis skin, however, can provide an entry portal for HSV-1 emphasizing the role of impaired barrier functions. Here, we explored how epidermal barriers impact HSV-1 invasion in human epidermis and influence the accessibility of nectin-1 for the virus. Using human epidermal equivalents, we observed a correlation of the number of infected cells with tight-junction formation, suggesting that mature tight junctions prior to formation of the stratum corneum prevent viral access to nectin-1. Consequently, impaired epidermal barriers driven by Th2-inflammatory cytokines interleukin 4 (IL-4) and IL-13 as well as the genetic predisposition of nonlesional atopic dermatitis keratinocytes correlated with enhanced infection supporting the impact of functional tight junctions for preventing infection in human epidermis. Comparable to E-cadherin, nectin-1 was distributed throughout the epidermal layers and localized just underneath the tight-junctions. While nectin-1 was evenly distributed on primary human keratinocytes in culture, the receptor was enriched at lateral surfaces of basal and suprabasal cells during differentiation. Nectin-1 showed no major redistribution in the thickened atopic dermatitis and IL-4/IL-13-treated human epidermis in which HSV-1 can invade. However, nectin-1 localization toward tight junction components changed, suggesting that defective tight-junction barriers make nectin-1 accessible for HSV-1 which enables facilitated viral penetration. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a widely distributed human pathogen which productively infects epithelia. The open question is which barriers of the highly protected epithelia must the virus overcome to reach its receptor nectin-1. Here, we used human epidermal equivalents to understand how physical barrier formation and nectin-1 distribution contribute to successful viral invasion. Inflammation-induced barrier defects led to facilitated viral penetration strengthening the role of functional tight-junctions in hindering viral access to nectin-1 that is localized just underneath tight junctions and distributed throughout all layers. We also found nectin-1 ubiquitously localized in the epidermis of atopic dermatitis and IL-4/IL-13-treated human skin implying that impaired tight-junctions in combination with a defective cornified layer allow the accessibility of nectin-1 to HSV-1. Our results support that successful invasion of HSV-1 in human skin relies on defective epidermal barriers, which not only include a dysfunctional cornified layer but also depend on impaired tight junctions.


Asunto(s)
Dermatitis Atópica , Herpes Simple , Herpesvirus Humano 1 , Nectinas , Uniones Estrechas , Humanos , Dermatitis Atópica/virología , Epidermis/virología , Herpesvirus Humano 1/fisiología , Interleucina-13 , Interleucina-4
2.
J Virol ; 96(4): e0206821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908440

RESUMEN

Herpes simplex virus 1 (HSV-1) invades its human host via the skin and mucosa and initiates infection in the epithelium. While human and murine epidermis are highly susceptible to HSV-1, we recently observed rare infected cells in the human dermis and only minor infection efficiency in murine dermis upon ex vivo infection. Here, we investigated why cells in the dermis are so inefficiently infected and explored potential differences between murine and human dermal fibroblasts. In principle, primary fibroblasts are highly susceptible to HSV-1; however, we found a delayed infection onset in human compared to murine cells. Intriguingly, only a minor delayed onset of infection was evident in collagen-embedded compared to unembedded human fibroblasts, although expression of the receptor nectin-1 dropped after collagen embedding. This finding is in contrast to previous observations with murine fibroblasts where collagen embedding delayed infection. The application of latex beads revealed limited penetration in the dermis, which was more pronounced in the human than in the murine dermis, supporting the species-specific differences already observed for HSV-1 invasion. Our results suggest that the distinct organization of human and murine dermis contributes to the presence and accessibility of the HSV-1 receptors as well as to the variable barrier function of the extracellular matrix. These contributions, in turn, give rise to inefficient viral access to cells in the dermis while dermal fibroblasts in culture are well infected. IMPORTANCE Dermal fibroblasts are exposed to HSV-1 upon invasion in skin during in vivo infection. Thus, fibroblasts represent a widely used experimental tool to understand virus-host cell interactions and are highly susceptible in culture. The spectrum of fibroblasts' characteristics in their in vivo environment, however, clearly differs from the observations under cell culture conditions, implying putative variations in virus-cell interactions. This becomes evident when ex vivo infection studies in murine as well as human dermis revealed the rather inefficient penetration of HSV-1 in the tissue and uptake in the dermal fibroblasts. Here, we initiated studies to explore the contributions of receptor presence and accessibility to efficient infection of dermal fibroblasts. Our results strengthen the heterogeneity of murine and human dermis and imply that the interplay between dermal barrier function and receptor presence determine how well HSV-1 penetrates the dermis.


Asunto(s)
Dermis/virología , Matriz Extracelular/metabolismo , Fibroblastos/virología , Herpesvirus Humano 1/fisiología , Animales , Colágeno/metabolismo , Dermis/citología , Dermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Nectinas/metabolismo , Especificidad de la Especie , Internalización del Virus
3.
J Virol ; 96(17): e0086422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35969080

RESUMEN

To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.


Asunto(s)
Dermatitis Atópica , Epidermis , Herpes Simple , Herpesvirus Humano 1 , Enfermedades de la Piel , Epidermis/patología , Epidermis/virología , Herpes Simple/patología , Herpesvirus Humano 1/fisiología , Humanos , Inflamación , Interleucina-13 , Interleucina-4 , Piel/patología , Piel/virología , Enfermedades de la Piel/virología , Técnicas de Cultivo de Tejidos
4.
J Virol ; 95(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239453

RESUMEN

Herpes simplex virus 1 (HSV-1) can adopt a variety of pathways to accomplish cellular internalization. In human keratinocytes representing the natural target cell of HSV-1, both direct plasma membrane fusion and endocytic uptake have been found. The impact of either pathway in successful infection, however, remains to be fully understood. To address the role of each internalization mode, we performed infection studies at low temperature as a tool to interfere with endocytic pathways. Interestingly, successful HSV-1 entry in primary human keratinocytes and HaCaT cells was observed even at 7°C, although delayed compared to infection at 37°C. Moreover, ex vivo infection of murine epidermis demonstrated that virus entry at 7°C is not only accomplished in cultured cells but also in tissue. Control experiments with cholera toxin B confirmed a block of endocytic uptake at 7°C. In addition, uptake of dextran by macropinosomes and phagocytic uptake of latex beads was also inhibited at 7°C. Infection of nectin-1-deficient murine keratinocytes affirmed that the entry at 7°C was receptor-dependent. Strikingly, the lysosomotropic agent, ammonium chloride, strongly inhibited HSV-1 entry suggesting a role for endosomal acidification. Ultrastructural analyses in turn revealed free capsids in the cytoplasm as well as virus particles in vesicles after infection at 7°C supporting both plasma membrane fusion and endocytic internalization as already observed at 37°C. Overall, entry of HSV-1 at 7°C suggests that the virus can efficiently adopt nectin-1-dependent unconventional vesicle uptake mechanisms in keratinocytes strengthening the role of endocytic internalization for successful infection.IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) relies on multiple internalization pathways to initiate infection. Our focus is on the entry in human keratinocytes, the major in vivo target during primary and recurrent infection. While antivirals reduce the severity of clinical cases, there is no cure or vaccine against HSV. To develop strategies that interfere with virus penetration, we need to understand the various parameters and conditions that determine virus entry. Here, we addressed the impact of virus internalization via vesicles by blocking endocytic processes at low temperature. Intriguingly, we detected entry of HSV-1 even at 7°C which led to infection of primary keratinocytes and epidermal tissue. Moreover, electron microscopy of human keratinocytes at 7°C support that internalization is based on fusion of the viral envelope with the plasma membrane as well as vesicle membranes. These results provide novel insights into conditions that still allow endocytic internalization of HSV-1.

5.
J Virol ; 95(21): e0133821, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379501

RESUMEN

Herpes simplex virus 1 (HSV-1) enters its human host via the skin and mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges with integrity loss demonstrated infected cells. After removal of the dermis, HSV-1 efficiently invaded the basal layer of the epidermis and, from there, gained access to suprabasal layers. This finding supports a high susceptibility of all epidermal layers which correlated with the surface expression of the receptors nectin-1 and herpesvirus entry mediator (HVEM). In contrast, only single infected cells were detected in the separated dermis, where minor expression of the receptors was found. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the damaged dermal layer. The application of latex beads revealed only occasional entry via the wounded dermis; however, it facilitated penetration via the wounded skin surface. Thus, we suggest that although the wounded human skin surface allows particle penetration, the skin still provides barriers that prevent HSV-1 from reaching its receptors. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) invades its host via the skin and mucosa, which leads to primary infection of the epithelium. As the various epithelial barriers effectively protect the tissue against viral invasion, successful infection most likely depends on tissue damage. We addressed the initial invasion process in human skin by ex vivo infection to understand how HSV-1 overcomes physical skin barriers and reaches its receptors to enter skin cells. Our results demonstrate that intact skin samples allow viral access only from the edges, while the epidermis is highly susceptible once the basal epidermal layer serves as an initial entry portal. Surprisingly, mechanical wounding did not facilitate HSV-1 entry via the skin surface, although latex beads still penetrated via the lesions. Our results imply that successful invasion of HSV-1 depends on how well the virus can reach its receptors, which was not accomplished by skin lesions under ex vivo conditions.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Nectinas/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Piel/virología , Internalización del Virus , Infección de Heridas/virología , Dermis/virología , Epidermis/virología , Interacciones Microbiota-Huesped , Humanos , Queratinocitos/virología
6.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826998

RESUMEN

Skin is a major target tissue of herpes simplex virus 1 (HSV-1), and we are only beginning to understand how individual receptors contribute to the initiation of infection in tissue. We recently demonstrated the impact of the receptors nectin-1 and herpesvirus entry mediator (HVEM) for entry of HSV-1 into murine epidermis. Here, we focus on viral invasion into the dermis, a further critical target tissue in vivo In principle, murine dermal fibroblasts are highly susceptible to HSV-1, and we previously showed that nectin-1 and HVEM can act as alternative receptors. To characterize their contribution as receptors in dermal tissue, we established an ex vivo infection assay of murine dermis. Only after separation of the epidermis from the dermis, we observed single infected cells in the upper dermis from juvenile mice at 5 h postinfection with increasing numbers of infected cells at later times. While nectin-1-expressing cells were less frequently detected, we found HVEM expressed on most cells of juvenile dermis. The comparison of infection efficiency during aging revealed a strong delay in the onset of infection in the dermis from aged mice. This observation correlated with a decrease in nectin-1-expressing fibroblasts during aging while the number of HVEM-expressing cells remained stable. Accordingly, aged nectin-1-deficient dermis was less susceptible to HSV-1 than the dermis from control mice. Thus, we conclude that the reduced availability of nectin-1 in aged dermis is a key contributor to a decrease in infection efficiency during aging.IMPORTANCE HSV-1 is a prevalent human pathogen which invades skin and mucocutaneous linings. So far, the underlying mechanisms of how the virus invades tissue, reaches its receptors, and initiates infection are still unresolved. To unravel the mechanical prerequisites that limit or favor viral invasion into tissue, we need to understand the contribution of the receptors that are involved in viral internalization. Here, we investigated the invasion process into murine dermis with the focus on receptor availability and found that infection efficiency decreases in aging mice. Based on studies of the expression of the receptors nectin-1 and HVEM, we suggest that the decreasing number of nectin-1-expressing fibroblasts leads to a delayed onset of infection in the dermis from aged compared to juvenile mice. Our results imply that the level of infection efficiency in murine dermis is closely linked to the availability of the receptor nectin-1 and can change during aging.


Asunto(s)
Envejecimiento/patología , Dermis/virología , Herpesvirus Humano 1/metabolismo , Nectinas/metabolismo , Receptores de Superficie Celular/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Animales , Dermis/metabolismo , Dermis/patología , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/virología , Herpes Simple/patología , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas/genética , Piel/metabolismo , Piel/virología , Internalización del Virus
7.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142668

RESUMEN

Dynamin GTPases, best known for their role in membrane fission of endocytic vesicles, provide a target for viruses to be exploited during endocytic uptake. Recently, we found that entry of herpes simplex virus 1 (HSV-1) into skin cells depends on dynamin, although our results supported that viral internalization occurs via both direct fusion with the plasma membrane and via endocytic pathways. To further explore the role of dynamin for efficient HSV-1 entry, we utilized conditional dynamin 1 and dynamin 2 double-knockout (DKO) fibroblasts as an experimental tool. Strikingly, HSV-1 entered control and DKO fibroblasts with comparable efficiencies. For comparison, we infected DKO cells with Semliki Forest virus, which is known to adopt clathrin-mediated endocytosis as its internalization pathway, and observed efficient virus entry. These results support the notion that the DKO cells provide alternative pathways for viral uptake. Treatment of cells with the dynamin inhibitor dynasore confirmed that HSV-1 entry depended on dynamin in the control fibroblasts. As expected, dynasore did not interfere with viral entry into DKO cells. Electron microscopy of HSV-1-infected cells suggests viral entry after fusion with the plasma membrane and by endocytosis in both dynamin-expressing and dynamin-deficient cells. Infection at low temperatures where endocytosis is blocked still resulted in HSV-1 entry, although at a reduced level, which suggests that nonendocytic pathways contribute to successful entry. Overall, our results strengthen the impact of dynamin for HSV-1 entry, as only cells that adapt to the lack of dynamin allow dynamin-independent entry.IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) can adapt to a variety of cellular pathways to enter cells. In general, HSV-1 is internalized by fusion of its envelope with the plasma membrane or by endocytic pathways, which reflects the high adaptation to differences in its target cells. The challenges are to distinguish whether multiple or only one of these internalization pathways leads to successful entry and, furthermore, to identify the mode of viral uptake. In this study, we focused on dynamin, which promotes endocytic vesicle fission, and explored how the presence and absence of dynamin can influence viral entry. Our results support the idea that HSV-1 entry into mouse embryonic fibroblasts depends on dynamin; however, depletion of dynamin still allows efficient viral entry, suggesting that alternative pathways present upon dynamin depletion can accomplish viral internalization.


Asunto(s)
Dinamina II/genética , Dinamina I/genética , Fibroblastos/metabolismo , Fibroblastos/virología , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Internalización del Virus , Animales , Células Cultivadas , Endocitosis , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Virus de los Bosques Semliki/fisiología
8.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29769337

RESUMEN

To enter host cells, herpes simplex virus 1 (HSV-1) initially attaches to cell surface glycosaminoglycans, followed by the requisite binding to one of several cellular receptors, leading to viral internalization. Although virus-receptor interactions have been studied in various cell lines, the contributions of individual receptors to uptake into target tissues such as mucosa, skin, and cornea are not well understood. We demonstrated that nectin-1 acts as a major receptor for HSV-1 entry into murine epidermis, while herpesvirus entry mediator (HVEM) can serve as an alternative receptor. Recently, the macrophage receptor with collagenous structure (MARCO) has been described to mediate adsorption of HSV-1 to epithelial cells. Here, we investigated the impact of MARCO on the entry process of HSV-1 into the two major cell types of skin, keratinocytes in the epidermis and fibroblasts in the underlying dermis. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered basal keratinocytes of MARCO-/- epidermis as efficiently as those of control epidermis. In addition, entry into dermal fibroblasts was not impaired in the absence of MARCO. When we treated epidermis, primary keratinocytes, or fibroblasts with poly(I), a ligand for class A scavenger receptors, HSV-1 entry was strongly reduced. As we also observed reducing effects of poly(I) in the absence of both MARCO and scavenger receptor A1, we concluded that the inhibitory effects of poly(I) on HSV-1 infection are not directly linked to class A scavenger receptors. Overall, our results support that HSV-1 entry into skin cells is independent of MARCO.IMPORTANCE During entry into its host cells, the human pathogen herpes simplex virus (HSV) interacts with various cellular receptors. Initially, receptor interaction can mediate cellular adsorption, followed by receptor binding that triggers viral internalization. The intriguing question is which receptors are responsible for the various steps during entry into the natural target tissues of HSV? Previously, we demonstrated the role of nectin-1 as a major receptor and that of HVEM as an alternative receptor for HSV-1 to invade murine epidermis. As MARCO has been described to promote infection in skin, we explored the predicted role of MARCO as a receptor that mediates adsorption to epithelial cells. Our infection studies of murine skin cells indicate that the absence of MARCO does not interfere with the efficiency of HSV-1 entry and that the inhibitory effect on viral adsorption by poly(I), a ligand of MARCO, is independent of MARCO.


Asunto(s)
Dermis/metabolismo , Epidermis/metabolismo , Fibroblastos/metabolismo , Herpesvirus Humano 1/metabolismo , Receptores Inmunológicos/metabolismo , Internalización del Virus , Animales , Dermis/virología , Epidermis/virología , Fibroblastos/virología , Herpesvirus Humano 1/genética , Humanos , Queratinocitos/metabolismo , Queratinocitos/virología , Ratones , Ratones Noqueados , Receptores Inmunológicos/genética
9.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878080

RESUMEN

Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible.IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor.


Asunto(s)
Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Inmunidad Innata , Queratinocitos/inmunología , Mucosa Bucal/inmunología , Femenino , Herpes Simple/patología , Humanos , Queratinocitos/patología , Queratinocitos/virología , Masculino , Mucosa Bucal/patología , Mucosa Bucal/virología
10.
J Virol ; 89(18): 9407-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136572

RESUMEN

UNLABELLED: The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. IMPORTANCE: Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of nectin-1 and herpesvirus entry mediator (HVEM) as receptors for HSV-1 entry into murine epidermis, where keratinocytes form the major cell type. Since the underlying dermis consists primarily of fibroblasts, we have now extended our study of HSV-1 entry to dermal fibroblasts isolated from nectin-1- or HVEM-deficient mice or from mice deficient in both receptors. Our results demonstrate a role for both nectin-1 and HVEM as receptors and suggest a further receptor which appears much less efficient.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fibroblastos/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Internalización del Virus , Animales , Moléculas de Adhesión Celular/genética , Células Cultivadas , Dermis/metabolismo , Dermis/patología , Dermis/virología , Epidermis/metabolismo , Epidermis/patología , Epidermis/virología , Fibroblastos/patología , Fibroblastos/virología , Herpes Simple/genética , Herpes Simple/patología , Humanos , Ratones , Ratones Noqueados , Nectinas , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética
11.
J Virol ; 89(1): 262-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320325

RESUMEN

UNLABELLED: Skin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1) in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissue in vivo. IMPORTANCE: Herpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grown in vitro revealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established an ex vivo infection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Queratinocitos/virología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Nectinas , Piel/virología
12.
J Gen Virol ; 95(Pt 6): 1396-1407, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24676420

RESUMEN

The TATA-box-binding protein (TBP) plays a key role in initiating eukaryotic transcription and is used by many viruses for viral transcription. We previously reported increased TBP levels during infection with the baculovirus Autographa californica multicapsid nuclear polyhedrovirus (AcMNPV). The TBP antiserum used in that study, however, cross-reacted with a baculoviral protein. Here, we reported that increased amounts of nuclear TBP were detected upon infection of Spodoptera frugiperda and TN-368 cells with a TBP-specific antiserum. TBP levels increased until 72 h post-infection (p.i.), whilst tbp transcripts decreased by 16 h p.i., which suggested a virus-induced influence on the TBP protein levels. To address a potential modification of the TBP degradation pathway during infection, we investigated the possible role of viral ubiquitin. Infection studies with AcMNPV recombinants carrying a mutated viral ubiquitin gene revealed that the TBP increase during infection was not altered. In addition, pulse-chase experiments indicated a high TBP half-life of ~60 h in uninfected cells, suggesting that a virus-induced increase of TBP stability was unlikely. This increase in TBP correlated with a redistribution to nuclear domains resembling sites of viral DNA synthesis. Furthermore, we observed colocalization of TBP with host RNA polymerase (RNAP) II, but only until 8 h p.i., whilst TBP, but not RNAPII, was present in the enlarged replication domains late during infection. Thus, we suggested that AcMNPV adapted a mechanism to accumulate the highly stable cellular TBP at sites of viral DNA replication and transcription.


Asunto(s)
Proteínas de Insectos/metabolismo , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/patogenicidad , Proteína de Unión a TATA-Box/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Replicación del ADN , Interacciones Huésped-Patógeno , Nucleopoliedrovirus/genética , Estabilidad Proteica , Proteolisis , Células Sf9 , Spodoptera , Ubiquitina/metabolismo , Replicación Viral
13.
Microbiol Spectr ; : e0518922, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779726

RESUMEN

The actin rearrangement-inducing factor 1 (Arif-1) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an early viral protein that manipulates the actin cytoskeleton of host insect cells. Arif-1 is conserved among alphabaculoviruses and is responsible for the accumulation of F-actin at the plasma membrane during the early phase of infection. However, the molecular mechanism underlying Arif-1-induced cortical actin accumulation is still open. Recent studies have demonstrated the formation of invadosome-like structures induced by Arif-1, suggesting a function in systemic virus spread. Here, we addressed whether Arif-1 is able to manipulate the actin cytoskeleton of mammalian cells comparably to insect cells. Strikingly, transient overexpression of Arif-1 in B16-F1 mouse melanoma cells revealed pronounced F-actin remodeling. Actin assembly was increased, and intense membrane ruffling occurred at the expense of substrate-associated lamellipodia. Deletion mutagenesis studies of Arif-1 confirmed that the C-terminal cytoplasmic region was not sufficient to induce F-actin remodeling, supporting that the transmembrane region for Arif-1 function is also required in mammalian cells. The similarities between Arif-1-induced actin remodeling in insect and mammalian cells indicate that Arif-1 function relies on conserved cellular interaction partners and signal transduction pathways, thus providing an experimental tool to elucidate the underlying mechanism. IMPORTANCE Virus-induced changes of the host cell cytoskeleton play a pivotal role in the pathogenesis of viral infections. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is known for intervening with the regulation of the host actin cytoskeleton in a wide manner throughout the infection cycle. The actin rearrangement-inducing factor 1 (Arif-1) is a viral protein that causes actin rearrangement during the early phase of AcMNPV infection. Here, we performed overexpression studies of Arif-1 in mammalian cells to establish an experimental tool that allows elucidation of the mechanism underlying the Arif-1-induced remodeling of actin dynamics in a well-characterized and genetically accessible system.

14.
Bio Protoc ; 12(9): e4411, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35800458

RESUMEN

Although herpes simplex virus 1 (HSV-1) is a well-studied virus, how the virus invades its human host via skin and mucosa to reach its receptors and initiate infection remains an open question. For studies of HSV-1 infection in skin, mice have been used as animal models. Murine skin infection can be induced after injection or scratching of the skin, which provides insights into disease pathogenesis but is clearly distinct from the natural entry route in human tissue. To explore the invasion route of HSV-1 on the tissue level, we established an ex vivo infection assay using skin explants. Here, we detail a protocol allowing the investigation of how the virus overcomes mechanical barriers in human skin to penetrate in keratinocytes and dermal fibroblasts. The protocol includes the preparation of total skin samples, skin shaves, and of separated epidermis and dermis, which is followed by incubation in virus suspension. The ex vivo infection assay allows the visualization, quantification, and characterization of single infected cells in the epidermis and dermis prior to viral replication and the virus-induced tissue damage. Hence, this experimental approach enables the identification of primary viral entry portals. Graphical abstract.

15.
J Gen Virol ; 91(Pt 9): 2152-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20463151

RESUMEN

VASP is an actin-regulatory protein that links signalling to remodelling of the cytoskeleton. We investigated the role of VASP during entry of herpes simplex viruses into epithelial MDCKII cells. As VASP functions are regulated by phosphorylations, the phosphorylation pattern was determined upon infection. Phosphorylated VASP decreased temporarily at 15 and 30 min after infection. The impact of phosphorylated VASP was addressed by overexpression of phosphomimetic VASP mutants. Our results revealed that phosphorylated VASP slightly reduced the number of infected cells. Expression studies with deletion mutants further indicated minor effects of VASP on infection efficiency, whereas RNA interference studies demonstrated that reduced VASP expression did not suppress infection. We conclude that VASP activities alone may contribute to herpes simplex virus infection to only a minor extent.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/patogenicidad , Proteínas de Microfilamentos/fisiología , Fosfoproteínas/fisiología , Sustitución de Aminoácidos , Animales , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Línea Celular , Perros , Eliminación de Gen , Expresión Génica , Herpes Simple/etiología , Herpes Simple/fisiopatología , Herpes Simple/virología , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Mutagénesis Sitio-Dirigida , Mutación , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transfección , Internalización del Virus
16.
J Virol ; 83(19): 9759-72, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19640983

RESUMEN

Keratinocytes of the skin or mucosa are the primary entry portals for herpes simplex virus type 1 (HSV-1) in vivo. We hypothesized that dynamics of cell motility and adhesion contribute to the initial steps of HSV-1 infection of epithelial cells, and thus, we investigated the impact of Rac1 and Cdc42, which serve as key regulators of actin dynamics. Measurement of endogenous Rac1 and Cdc42 in the human keratinocyte cell line HaCaT indicated temporary changes in activity levels of Rac1/Cdc42 upon HSV-1 infection. Overexpression of Rac1/Cdc42 mutants in HaCaT cells demonstrated a decrease of infection efficiency with constitutively active Rac1 or Cdc42, while dominant-negative Rac1 had no effect. Accordingly, we addressed whether the absence of Rac1 and/or Cdc42 influenced infection, and we performed RNA interference studies. Both in HaCaT cells and in primary human keratinocytes, reduction of Rac1 and/or Cdc42 did not suppress infection. When mouse epidermis was infected ex vivo, we observed early HSV-1 infection in basal keratinocytes. Similar results were obtained upon infection of mouse epidermis with a keratinocyte-restricted deletion of the rac1 gene, indicating no inhibitory effect on HSV-1 infection in the absence of Rac1. Our results suggest that HSV-1 infection of keratinocytes does not depend on pathways involving Rac1 and Cdc42 and that constitutively active Rac1 and Cdc42 have the potential to interfere with HSV-1 infectivity.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple/metabolismo , Herpesvirus Humano 1/metabolismo , Queratinocitos/virología , Transducción de Señal , Proteína de Unión al GTP cdc42/biosíntesis , Proteína de Unión al GTP rac1/biosíntesis , Animales , Epidermis/virología , Genes Dominantes , Humanos , Ratones , Ratones Noqueados , Proteínas de Unión al GTP rho/biosíntesis , Proteína de Unión al GTP rhoA/biosíntesis
17.
J Invest Dermatol ; 137(4): 884-893, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27939379

RESUMEN

Herpes simplex virus 1 has to overcome skin or mucosa barriers to infect its human host. The impact of the various barrier functions on successful viral invasion is not known. On ex vivo infection of murine skin, we observed efficient invasion only via the basal epidermal layer when the dermis was removed. Here, we investigated how wounding and intercellular junction formation control successful viral entry. After wounding of skin samples or removal of the stratum corneum, infected cells were rarely detected. On the basis of infection studies in epidermis from IFN-stimulated mice, we assume that mechanical wounding does not lead to an antiviral state that impedes infection. When we infected human skin equivalents, we observed entry only into unstratified keratinocytes or after wounding of fully stratified cultures. Reduced infection of keratinocytes after calcium-induced stratification confirmed the impact of junction formation. To assess the effect of functional tight junctions, stratified cultures of polarity regulator partitioning-defective-3- or E-cadherin-deficient keratinocytes were infected. As the number of infected cells strongly increased with enhanced paracellular permeability, we conclude that the formation of functional tight junctions interferes with viral entry indicating that next to the stratum corneum tight junctions are a major physical barrier for herpes simplex virus 1 invasion into tissue.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Epitelio/metabolismo , Herpes Simple/patología , Herpesvirus Humano 1/patogenicidad , Heridas y Lesiones/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Rol , Sensibilidad y Especificidad , Uniones Estrechas/metabolismo , Heridas y Lesiones/virología
18.
Virus Res ; 115(2): 207-13, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16271277

RESUMEN

Host RNA polymerase II (RNAP II) is responsible for viral transcription of the herpes simplex virus type 1 (HSV-1) genome and is relocalized to viral DNA replication compartments. Thus, we investigated whether TATA-binding protein (TBP) and TBP-associated factors (TAFs) are recruited to sites of viral transcription and replication and whether TBP/TAF expressions are influenced upon infection. The protein levels of TBP, hsTAF1/TAF(II)250, hsTAF4/TAF(II)135, and hsTAF5/TAF(II)100 were constant during the early phase of infection and started to decrease late during infection. Only for hsTAF7/TAF(II)55 we sometimes observed a decrease already at 4-8h postinfection (p.i.). Concomitantly with the relocalization of RNAP II, TBP and hsTAFs were redistributed to sites of viral DNA replication and transcription. In the absence of viral DNA replication TBP/hsTAFs were present in distinct nuclear dots, however, enlargement of the nuclear structures did not take place. Our results show that HSV-1 infection has no influence on the protein levels of TFIID components and leads to a redistribution of TBP and hsTAFs to prereplicative sites that enlarge to viral DNA replication compartments.


Asunto(s)
Núcleo Celular/química , Replicación del ADN , Herpesvirus Humano 1/fisiología , Factores Asociados con la Proteína de Unión a TATA/análisis , Proteína de Unión a TATA-Box/análisis , Replicación Viral , Células Cultivadas , ADN Viral/metabolismo , Fibroblastos , Humanos , Inmunohistoquímica , Microscopía Confocal , ARN Polimerasa II/análisis , Transcripción Genética
19.
J Vis Exp ; (102): e53046, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26325191

RESUMEN

To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.


Asunto(s)
Epidermis/virología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Enfermedades Cutáneas Virales/virología , Animales , Ratones
20.
J Invest Dermatol ; 135(12): 3009-3016, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26203638

RESUMEN

Herpes simplex virus type 1 (HSV-1) invades its human host via the skin or mucosa. We aim to understand how HSV-1 overcomes the barrier function of the host epithelia, and for this reason, we established an ex vivo infection assay initially with murine skin samples. Here, we report how tissue has to be prepared to be susceptible to HSV-1 infection. Most efficient infection of the epidermis was achieved by removing the dermis. HSV-1 initially invaded the basal epidermal layer, and from there, spreading to the suprabasal layers was observed. Strikingly, in resting stage hair follicles, only the hair germ was infected, whereas the quiescent bulge stem cells (SCs) were resistant to infection. However, during the growth phase, infected cells were also detected in the activated bulge SCs. We demonstrated that cell proliferation was not a precondition for HSV-1 invasion, but SC activation was required as shown by infection of aberrantly activated bulge SCs in integrin-linked kinase (ILK)-deficient hair follicles. These results suggest that the status of the bulge SCs determines whether HSV-1 can reach its receptors, whereas the receptors on basal keratinocytes are accessible irrespective of their proliferation status.


Asunto(s)
Epidermis/virología , Herpesvirus Humano 1/patogenicidad , Animales , Ácido Edético/farmacología , Endopeptidasas/farmacología , Folículo Piloso/virología , Proteínas Inmediatas-Precoces/fisiología , Melanocitos/virología , Ratones , Ratones Endogámicos C57BL , Uniones Estrechas/fisiología , Ubiquitina-Proteína Ligasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA