Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946675

RESUMEN

INTRODUCTION: We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS: We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS: We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION: Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS: We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.

2.
Mol Psychiatry ; 26(2): 656-665, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-30644433

RESUMEN

Successful cognitive development between childhood and adulthood has important consequences for future mental and physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying changes in cognitive abilities during this developmental period will provide important insights into the biological mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort (PNC), a large population-based sample of individuals aged 8 to 21 years old (n = 6634), we used an empirical relatedness matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence cognitive development, rather than genes that influence cognition per se. Moreover, since aberrant cognitive development confers risk for several psychiatric disorders, further examination of these Gene × Age interactions may provide important insights into their etiology.


Asunto(s)
Cognición , Trastornos Mentales , Adolescente , Adulto , Niño , Estudios de Cohortes , Humanos , Adulto Joven
3.
Hum Brain Mapp ; 42(6): 1727-1741, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33340172

RESUMEN

Although previous studies have highlighted associations of cannabis use with cognition and brain morphometry, critical questions remain with regard to the association between cannabis use and brain structural and functional connectivity. In a cross-sectional community sample of 205 African Americans (age 18-70) we tested for associations of cannabis use disorder (CUD, n = 57) with multi-domain cognitive measures and structural, diffusion, and resting state brain-imaging phenotypes. Post hoc model evidence was computed with Bayes factors (BF) and posterior probabilities of association (PPA) to account for multiple testing. General cognitive functioning, verbal intelligence, verbal memory, working memory, and motor speed were lower in the CUD group compared with non-users (p < .011; 1.9 < BF < 3,217). CUD was associated with altered functional connectivity in a network comprising the motor-hand region in the superior parietal gyri and the anterior insula (p < .04). These differences were not explained by alcohol, other drug use, or education. No associations with CUD were observed in cortical thickness, cortical surface area, subcortical or cerebellar volumes (0.12 < BF < 1.5), or graph-theoretical metrics of resting state connectivity (PPA < 0.01). In a large sample collected irrespective of cannabis used to minimize recruitment bias, we confirm the literature on poorer cognitive functioning in CUD, and an absence of volumetric brain differences between CUD and non-CUD. We did not find evidence for or against a disruption of structural connectivity, whereas we did find localized resting state functional dysconnectivity in CUD. There was sufficient proof, however, that organization of functional connectivity as determined via graph metrics does not differ between CUD and non-user group.


Asunto(s)
Corteza Cerebral , Disfunción Cognitiva , Abuso de Marihuana , Red Nerviosa , Adulto , Negro o Afroamericano , Anciano , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Conectoma , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Abuso de Marihuana/complicaciones , Abuso de Marihuana/diagnóstico por imagen , Abuso de Marihuana/patología , Abuso de Marihuana/fisiopatología , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Adulto Joven
4.
Cereb Cortex ; 30(9): 4899-4913, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32318716

RESUMEN

Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Estudios de Asociación Genética , Red Nerviosa/fisiopatología , Adulto , Anciano , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Análisis de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatología
5.
Cereb Cortex ; 30(6): 3439-3450, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32037459

RESUMEN

Previous studies suggest that gyrification is associated with superior cognitive abilities in humans, but the strength of this relationship remains unclear. Here, in two samples of related individuals (total N = 2882), we calculated an index of local gyrification (LGI) at thousands of cortical surface points using structural brain images and an index of general cognitive ability (g) using performance on cognitive tests. Replicating previous studies, we found that phenotypic and genetic LGI-g correlations were positive and statistically significant in many cortical regions. However, all LGI-g correlations in both samples were extremely weak, regardless of whether they were significant or nonsignificant. For example, the median phenotypic LGI-g correlation was 0.05 in one sample and 0.10 in the other. These correlations were even weaker after adjusting for confounding neuroanatomical variables (intracranial volume and local cortical surface area). Furthermore, when all LGIs were considered together, at least 89% of the phenotypic variance of g remained unaccounted for. We conclude that the association between LGI and g is too weak to have profound implications for our understanding of the neurobiology of intelligence. This study highlights potential issues when focusing heavily on statistical significance rather than effect sizes in large-scale observational neuroimaging studies.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Cognición/fisiología , Inteligencia/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Corteza Cerebral/anatomía & histología , Femenino , Humanos , Inteligencia/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto Joven
6.
Diabetologia ; 63(5): 977-986, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32016567

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is associated with cognitive impairments, but it is unclear whether common genetic factors influence both type 2 diabetes risk and cognition. METHODS: Using data from 1892 Mexican-American individuals from extended pedigrees, including 402 with type 2 diabetes, we examined possible pleiotropy between type 2 diabetes and cognitive functioning, as measured by a comprehensive neuropsychological test battery. RESULTS: Negative phenotypic correlations (ρp) were observed between type 2 diabetes and measures of attention (Continuous Performance Test [CPT d']: ρp = -0.143, p = 0.001), verbal memory (California Verbal Learning Test [CVLT] recall: ρp = -0.111, p = 0.004) and face memory (Penn Face Memory Test [PFMT]: ρp = -0.127, p = 0.002; PFMT Delayed: ρp = -0.148, p = 2 × 10-4), replicating findings of cognitive impairment in type 2 diabetes. Negative genetic correlations (ρg) were also observed between type 2 diabetes and measures of attention (CPT d': ρg = -0.401, p = 0.001), working memory (digit span backward test: ρg = -0.380, p = 0.005), and face memory (PFMT: ρg = -0.476, p = 2 × 10-4; PFMT Delayed: ρg = -0.376, p = 0.005), suggesting that the same genetic factors underlying risk for type 2 diabetes also influence poor cognitive performance in these domains. Performance in these domains was also associated with type 2 diabetes risk using an endophenotype ranking value approach. Specifically, on measures of attention (CPT d': ß = -0.219, p = 0.005), working memory (digit span backward: ß = -0.326, p = 0.035), and face memory (PFMT: ß = -0.171, p = 0.023; PFMT Delayed: ß = -0.215, p = 0.005), individuals with type 2 diabetes showed the lowest performance, while unaffected/unrelated individuals showed the highest performance, and those related to an individual with type 2 diabetes performed at an intermediate level. CONCLUSIONS/INTERPRETATION: These findings suggest that cognitive impairment may be a useful endophenotype of type 2 diabetes and, therefore, help to elucidate the pathophysiological underpinnings of this chronic disease. DATA AVAILABILITY: The data analysed in this study is available in dbGaP: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Adulto , Cognición/fisiología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto Joven
7.
Psychol Med ; 50(1): 48-57, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30606277

RESUMEN

BACKGROUND: Cognitive impairment is a core feature of psychotic disorders, but the profile of impairment across adulthood, particularly in African-American populations, remains unclear. METHODS: Using cross-sectional data from a case-control study of African-American adults with affective (n = 59) and nonaffective (n = 68) psychotic disorders, we examined cognitive functioning between early and middle adulthood (ages 20-60) on measures of general cognitive ability, language, abstract reasoning, processing speed, executive function, verbal memory, and working memory. RESULTS: Both affective and nonaffective psychosis patients showed substantial and widespread cognitive impairments. However, comparison of cognitive functioning between controls and psychosis groups throughout early (ages 20-40) and middle (ages 40-60) adulthood also revealed age-associated group differences. During early adulthood, the nonaffective psychosis group showed increasing impairments with age on measures of general cognitive ability and executive function, while the affective psychosis group showed increasing impairment on a measure of language ability. Impairments on other cognitive measures remained mostly stable, although decreasing impairments on measures of processing speed, memory and working memory were also observed. CONCLUSIONS: These findings suggest similarities, but also differences in the profile of cognitive dysfunction in adults with affective and nonaffective psychotic disorders. Both affective and nonaffective patients showed substantial and relatively stable impairments across adulthood. The nonaffective group also showed increasing impairments with age in general and executive functions, and the affective group showed an increasing impairment in verbal functions, possibly suggesting different underlying etiopathogenic mechanisms.


Asunto(s)
Trastornos Psicóticos Afectivos/psicología , Negro o Afroamericano/psicología , Negro o Afroamericano/estadística & datos numéricos , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Trastornos del Humor/psicología , Adulto , Distribución por Edad , Estudios de Casos y Controles , Connecticut/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Mol Psychiatry ; 24(4): 523-535, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29955165

RESUMEN

As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the "Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders" consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.


Asunto(s)
Familia/psicología , Trastornos Mentales/genética , Alelos , Frecuencia de los Genes/genética , Variación Genética/genética , Genotipo , Humanos , Salud Mental , Linaje , Fenotipo , Proyectos de Investigación , Tamaño de la Muestra , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos
9.
Hum Brain Mapp ; 37(1): 191-202, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26485182

RESUMEN

Previous work has shown that the hippocampus is smaller in the brains of individuals suffering from major depressive disorder (MDD) than those of healthy controls. Moreover, right hippocampal volume specifically has been found to predict the probability of subsequent depressive episodes. This study explored the utility of right hippocampal volume as an endophenotype of recurrent MDD (rMDD). We observed a significant genetic correlation between the two traits in a large sample of Mexican American individuals from extended pedigrees (ρg = -0.34, p = 0.013). A bivariate linkage scan revealed a significant pleiotropic quantitative trait locus on chromosome 18p11.31-32 (LOD = 3.61). Bivariate association analysis conducted under the linkage peak revealed a variant (rs574972) within an intron of the gene SMCHD1 meeting the corrected significance level (χ(2) = 19.0, p = 7.4 × 10(-5)). Univariate association analyses of each phenotype separately revealed that the same variant was significant for right hippocampal volume alone, and also revealed a suggestively significant variant (rs12455524) within the gene DLGAP1 for rMDD alone. The results implicate right-hemisphere hippocampal volume as a possible endophenotype of rMDD, and in so doing highlight a potential gene of interest for rMDD risk.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Endofenotipos , Salud de la Familia , Femenino , Lateralidad Funcional/genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Escala del Estado Mental , Americanos Mexicanos , Persona de Mediana Edad , Recurrencia , Proteínas Asociadas a SAP90-PSD95 , Adulto Joven
10.
Am J Med Genet B Neuropsychiatr Genet ; 171B(1): 111-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26768522

RESUMEN

Cognitive control refers to a set of mental processes that modulate other cognitive and emotional systems in service of goal-directed adaptive behavior. There is growing support for the notion that cognitive control abnormalities are a central component of many of the neuropsychological deficits observed in individuals with mental illnesses, particularly those with psychotic disorders. NIMH's research domain criteria (RDoC) initiative, which is designed to develop biologically informed constructs to better understand psychopathology, designated cognitive control a construct within the cognitive systems domain. Identification of genes that influence cognitive control or its supportive brain systems will improve our understating of the RDoC construct and provide candidate genes for psychotic disorders. We examine evidence for cognitive control deficits in psychosis, determine if these measures could be useful endophenotypes, and explore work linking genetic variation to cognitive control performance. While there is a wealth of evidence to support the notion the cognitive control is a valid endophenotype for psychosis, its genetic underpinning remains ill characterized. However, existing work provides a promising foundation on which future endeavors might build. Confirming existing individual gene associations will go some way to expanding our understanding of the genetics of cognitive control, and by extension, psychotic disorders. Yet, to truly understand the molecular underpinnings of such complex traits, it may be necessary to evaluate genes in tandem, focusing not on single genes but rather on empirically derived gene sets or on functionally defined networks of genes.


Asunto(s)
Cognición/fisiología , Endofenotipos/metabolismo , Memoria/fisiología , Trastornos Psicóticos/psicología , Animales , Humanos , National Institute of Mental Health (U.S.) , Estados Unidos
11.
Am J Med Genet B Neuropsychiatr Genet ; 168(8): 678-86, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26440917

RESUMEN

The insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional, and developmental characteristics, and they serve higher cognitive functions of theoretical relevance to schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions in schizophrenia are the most consistent and pronounced in a network primarily composed of the insula and mPFC. We used source-based morphometry, a multivariate technique optimized for structural MRI, in a large sample of randomly ascertained pedigrees (N = 887) to derive an insula-mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-mPFC gray matter component as an independent source of gray matter variation in the general population, and verified its relevance to schizophrenia in an independent case-control sample. Secondly, we showed that the neuroanatomical variation defined by this component is largely determined by additive genetic variation (h(2) = 0.59), and genome-wide linkage analysis resulted in a significant linkage peak at 12q24 (LOD = 3.76). This region has been of significant interest to psychiatric genetics as it contains the Darier's disease locus and other proposed susceptibility genes (e.g., DAO, NOS1), and it has been linked to affective disorders and schizophrenia in multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula gray matter concentration. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Cromosomas Humanos Par 12 , Americanos Mexicanos , Esquizofrenia/genética , Esquizofrenia/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Corteza Cerebral/patología , Cognición , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Corteza Prefrontal/patología , Esquizofrenia/etnología , Adulto Joven
12.
Am J Med Genet B Neuropsychiatr Genet ; 165B(2): 122-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24464604

RESUMEN

Endophenotypes are measurable biomarkers that are correlated with an illness, at least in part, because of shared underlying genetic influences. Endophenotypes may improve our power to detect genes influencing risk of illness by being genetically simpler, closer to the level of gene action, and with larger genetic effect sizes or by providing added statistical power through their ability to quantitatively rank people within diagnostic categories. Furthermore, they also provide insight into the mechanisms underlying illness and will be valuable in developing biologically-based nosologies, through efforts such as RDoC, that seek to explain both the heterogeneity within current diagnostic categories and the overlapping clinical features between them. While neuroimaging, electrophysiological, and cognitive measures are currently most used in psychiatric genetic studies, researchers currently are attempting to identify candidate endophenotypes that are less genetically complex and potentially closer to the level of gene action, such as transcriptomic and proteomic phenotypes. Sifting through tens of thousands of such measures requires automated, high-throughput ways of assessing, and ranking potential endophenotypes, such as the Endophenotype Ranking Value. However, despite the potential utility of endophenotypes for gene characterization and discovery, there is considerable resistance to endophenotypic approaches in psychiatry. In this review, we address and clarify some of the common issues associated with the usage of endophenotypes in the psychiatric genetics community.


Asunto(s)
Encéfalo/metabolismo , Endofenotipos , Proteómica , Psiquiatría , Animales , Biomarcadores , Encéfalo/anatomía & histología , Endofenotipos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Proteómica/métodos
13.
Am J Med Genet B Neuropsychiatr Genet ; 165B(1): 84-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243780

RESUMEN

It is well established that risk for developing psychosis is largely mediated by the influence of genes, but identifying precisely which genes underlie that risk has been problematic. Focusing on endophenotypes, rather than illness risk, is one solution to this problem. Impaired cognition is a well-established endophenotype of psychosis. Here we aimed to characterize the genetic architecture of cognition using phenotypically detailed models as opposed to relying on general IQ or individual neuropsychological measures. In so doing we hoped to identify genes that mediate cognitive ability, which might also contribute to psychosis risk. Hierarchical factor models of genetically clustered cognitive traits were subjected to linkage analysis followed by QTL region-specific association analyses in a sample of 1,269 Mexican American individuals from extended pedigrees. We identified four genome wide significant QTLs, two for working and two for spatial memory, and a number of plausible and interesting candidate genes. The creation of detailed models of cognition seemingly enhanced the power to detect genetic effects on cognition and provided a number of possible candidate genes for psychosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/genética , Memoria a Corto Plazo , Trastornos Psicóticos/genética , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cognición , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Americanos Mexicanos/genética , Persona de Mediana Edad , Pruebas Neuropsicológicas , Riesgo , Adulto Joven
14.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425936

RESUMEN

Background: Bipolar disorder (BD) presents with a wide range of symptoms that vary among relatives, casting doubt on categorical illness models. To address this uncertainly, we investigated the heritability and genetic relationships between categorical and dimensional models of BD in a family sample. Methods: Participants in the Amish-Mennonite Bipolar Genetics (AMBiGen) study were assigned categorical mood disorder diagnoses by structured psychiatric interview and completed the Mood Disorder Questionnaire (MDQ), which assesses lifetime history of manic symptoms and associated impairment. Major MDQ dimensions were analyzed by Principal Component Analysis (PCA) in 726 participants. Heritability and genetic overlaps between categorical diagnoses and MDQ-derived dimensions were estimated with SOLAR-ECLIPSE within 432 genotyped participants. Results: MDQ scores were significantly higher among individuals diagnosed with BD and related disorders, as expected, but varied widely among relatives. PCA suggested a three-component model for the MDQ. Heritability of the MDQ score was 30% (p<0.001), evenly distributed across its three principal components. Strong and significant genetic correlations were found between categorical diagnoses and most MDQ measures. Limitations: Recruitment through probands with BD resulted in increased prevalence of BD in this sample, limiting generalizability. Unavailable genetic data reduced sample size for some analyses. Conclusion: heritability and high genetic correlations between categorical diagnoses and MDQ measures support a genetic continuity between dimensional and categorical models of BD.

15.
Biol Psychiatry Glob Open Sci ; 3(3): 519-529, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519455

RESUMEN

Background: Polygenic risk scores (PRSs) are indices of genetic liability for illness, but their clinical utility for predicting risk for a specific psychiatric disorder is limited. Genetic overlap among disorders and their effects on allied phenotypes may be a possible explanation, but this has been difficult to quantify given focus on singular disorders and/or allied phenotypes. Methods: We constructed PRSs for 5 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder) and 3 nonpsychiatric control traits (height, type II diabetes, irritable bowel disease) in the UK Biobank (N = 31,616) and quantified associations between PRSs and phenotypes allied with mental illness: behavioral (symptoms, cognition, trauma) and brain measures from magnetic resonance imaging. We then evaluated the extent of specificity among PRSs and their effects on these allied phenotypes. Results: Correlations among psychiatric PRSs replicated previous work, with overlap between schizophrenia and bipolar disorder, which was distinct from overlap between autism spectrum disorder and attention-deficit/hyperactivity disorder; overlap between psychiatric and control PRSs was minimal. There was, however, substantial overlap of PRS effects on allied phenotypes among psychiatric disorders and among psychiatric disorders and control traits, where the extent and pattern of overlap was phenotype specific. Conclusions: Results show that genetic distinctions between psychiatric disorders and between psychiatric disorders and control traits exist, but this does not extend to their effects on allied phenotypes. Although overlap can be informative, work is needed to construct PRSs that will function at the level of specificity needed for clinical application.

16.
Biol Psychiatry ; 94(7): 591-600, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764568

RESUMEN

BACKGROUND: Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS: The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS: CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS: CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Variaciones en el Número de Copia de ADN/genética , Bancos de Muestras Biológicas , Trastornos Mentales/genética , Reino Unido , Factores de Riesgo
17.
Front Neurol ; 14: 1071766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970519

RESUMEN

Introduction: The cocktail-party problem refers to the difficulty listeners face when trying to attend to relevant sounds that are mixed with irrelevant ones. Previous studies have shown that solving these problems relies on perceptual as well as cognitive processes. Previously, we showed that speech-reception thresholds (SRTs) on a cocktail-party listening task were influenced by genetic factors. Here, we estimated the degree to which these genetic factors overlapped with those influencing cognitive abilities. Methods: We measured SRTs and hearing thresholds (HTs) in 493 listeners, who ranged in age from 18 to 91 years old. The same individuals completed a cognitive test battery comprising 18 measures of various cognitive domains. Individuals belonged to large extended pedigrees, which allowed us to use variance component models to estimate the narrow-sense heritability of each trait, followed by phenotypic and genetic correlations between pairs of traits. Results: All traits were heritable. The phenotypic and genetic correlations between SRTs and HTs were modest, and only the phenotypic correlation was significant. By contrast, all genetic SRT-cognition correlations were strong and significantly different from 0. For some of these genetic correlations, the hypothesis of complete pleiotropy could not be rejected. Discussion: Overall, the results suggest that there was substantial genetic overlap between SRTs and a wide range of cognitive abilities, including abilities without a major auditory or verbal component. The findings highlight the important, yet sometimes overlooked, contribution of higher-order processes to solving the cocktail-party problem, raising an important caveat for future studies aiming to identify specific genetic factors that influence cocktail-party listening.

18.
iScience ; 25(9): 104997, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111257

RESUMEN

Communicating in everyday situations requires solving the cocktail-party problem, or segregating the acoustic mixture into its constituent sounds and attending to those of most interest. Humans show dramatic variation in this ability, leading some to experience real-world problems irrespective of whether they meet criteria for clinical hearing loss. Here, we estimated the genetic contribution to cocktail-party listening by measuring speech-reception thresholds (SRTs) in 425 people from large families and ranging in age from 18 to 91 years. Roughly half the variance of SRTs was explained by genes (h 2 = 0.567). The genetic correlation between SRTs and hearing thresholds (HTs) was medium (ρ G = 0.392), suggesting that the genetic factors influencing cocktail-party listening were partially distinct from those influencing sound sensitivity. Aging and socioeconomic status also strongly influenced SRTs. These findings may represent a first step toward identifying genes for "hidden hearing loss," or hearing problems in people with normal HTs.

19.
Am J Psychiatry ; 179(11): 853-861, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36000218

RESUMEN

OBJECTIVE: Copy number variants (CNVs) are strongly associated with neurodevelopmental and psychotic disorders. Early-onset psychosis (EOP), where symptoms appear before 18 years of age, is thought to be more strongly influenced by genetic factors than adult-onset psychotic disorders. However, the prevalence and effect of CNVs in EOP is unclear. METHODS: The authors documented the prevalence of recurrent CNVs and the functional impact of deletions and duplications genome-wide in 137 children and adolescents with EOP compared with 5,540 individuals with autism spectrum disorder (ASD) and 16,504 population control subjects. Specifically, the frequency of 47 recurrent CNVs previously associated with neurodevelopmental and neuropsychiatric illnesses in each cohort were compared. Next, CNV risk scores (CRSs), indices reflecting the dosage sensitivity for any gene across the genome that is encapsulated in a deletion or duplication separately, were compared between groups. RESULTS: The prevalence of recurrent CNVs was significantly higher in the EOP group than in the ASD (odds ratio=2.30) and control (odds ratio=5.06) groups. However, the difference between the EOP and ASD groups was attenuated when EOP participants with co-occurring ASD were excluded. CRS was significantly higher in the EOP group compared with the control group for both deletions (odds ratio=1.30) and duplications (odds ratio=1.09). In contrast, the EOP and ASD groups did not differ significantly in terms of CRS. CONCLUSIONS: Given the high frequency of recurrent CNVs in the EOP group and comparable CRSs in the EOP and ASD groups, the findings suggest that all children and adolescents with a psychotic diagnosis should undergo genetic screening, as is recommended in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Psicóticos , Niño , Adolescente , Adulto , Humanos , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/genética , Estudios de Cohortes , Oportunidad Relativa
20.
Eur Psychiatry ; 64(1): e29, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33785081

RESUMEN

BACKGROUND: Questions remain regarding whether genetic influences on early life psychopathology overlap with cognition and show developmental variation. METHODS: Using data from 9,421 individuals aged 8-21 from the Philadelphia Neurodevelopmental Cohort, factors of psychopathology were generated using a bifactor model of item-level data from a psychiatric interview. Five orthogonal factors were generated: anxious-misery (mood and anxiety), externalizing (attention deficit hyperactivity and conduct disorder), fear (phobias), psychosis-spectrum, and a general factor. Genetic analyses were conducted on a subsample of 4,662 individuals of European American ancestry. A genetic relatedness matrix was used to estimate heritability of these factors, and genetic correlations with executive function, episodic memory, complex reasoning, social cognition, motor speed, and general cognitive ability. Gene × Age analyses determined whether genetic influences on these factors show developmental variation. RESULTS: Externalizing was heritable (h2 = 0.46, p = 1 × 10-6), but not anxious-misery (h2 = 0.09, p = 0.183), fear (h2 = 0.04, p = 0.337), psychosis-spectrum (h2 = 0.00, p = 0.494), or general psychopathology (h2 = 0.21, p = 0.040). Externalizing showed genetic overlap with face memory (ρg = -0.412, p = 0.004), verbal reasoning (ρg = -0.485, p = 0.001), spatial reasoning (ρg = -0.426, p = 0.010), motor speed (ρg = 0.659, p = 1x10-4), verbal knowledge (ρg = -0.314, p = 0.002), and general cognitive ability (g)(ρg = -0.394, p = 0.002). Gene × Age analyses revealed decreasing genetic variance (γg = -0.146, p = 0.004) and increasing environmental variance (γe = 0.059, p = 0.009) on externalizing. CONCLUSIONS: Cognitive impairment may be a useful endophenotype of externalizing psychopathology and, therefore, help elucidate its pathophysiological underpinnings. Decreasing genetic variance suggests that gene discovery efforts may be more fruitful in children than adolescents or young adults.


Asunto(s)
Disfunción Cognitiva , Trastornos Psicóticos , Adolescente , Niño , Cognición , Función Ejecutiva , Humanos , Psicopatología , Trastornos Psicóticos/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA