Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 174(4): 1038-1038.e1, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096304

RESUMEN

MicroRNAs (miRNAs) are synonymous with post-transcriptional repression of target genes. A number of studies, however, have reported miRNAs functioning outside this paradigm, and this SnapShot outlines these unconventional ways in which miRNAs can exert regulatory functions. To view this SnapShot, open or download the PDF.


Asunto(s)
Núcleo Celular/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/metabolismo , Humanos , ARN Mensajero/genética
2.
Nature ; 578(7795): 449-454, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051587

RESUMEN

The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system1,2. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown1,3. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.


Asunto(s)
Neuronas Adrenérgicas/patología , Transdiferenciación Celular , Reprogramación Celular , Neoplasias de la Boca/patología , Células Receptoras Sensoriales/patología , Proteína p53 Supresora de Tumor/deficiencia , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Animales , División Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Fibras Nerviosas/patología , Neuritas/patología , Receptores Adrenérgicos/metabolismo , Estudios Retrospectivos , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 120(23): e2122053120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252969

RESUMEN

The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Estrógenos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
4.
Trends Genet ; 38(4): 379-394, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34728089

RESUMEN

Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.


Asunto(s)
MicroARNs , Neoplasias , Epigénesis Genética/genética , Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética
5.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776213

RESUMEN

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Asunto(s)
Neoplasias de la Mama , Proteínas Nucleares , ARN Largo no Codificante , Proteínas de Unión al ARN , Factores de Transcripción , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
6.
Br J Cancer ; 126(4): 551-561, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34671127

RESUMEN

NEAT1 is a highly abundant nuclear architectural long non-coding RNA. There are two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, of which the latter is an essential scaffold for the assembly of a class of nuclear ribonucleoprotein bodies called paraspeckles. Paraspeckle formation is elevated by a wide variety of cellular stressors and in certain developmental processes, either through transcriptional upregulation of the NEAT1 gene or through a switch from NEAT1_1 to NEAT1_2 isoform production. In such conditions, paraspeckles modulate cellular processes by sequestering proteins or RNA molecules. NEAT1 is abnormally expressed in many cancers and a growing body of evidence suggests that, in many cases, high NEAT1 levels are associated with therapy resistance and poor clinical outcome. Here we review the current knowledge of NEAT1 expression and functions in breast cancer, highlighting its established role in postnatal mammary gland development. We will discuss possible isoform-specific roles of NEAT1_1 and NEAT1_2 in different breast cancer subtypes, which critically needs to be considered when studying NEAT1 and breast cancer.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Paraspeckles/metabolismo , Regulación hacia Arriba
7.
Gastroenterology ; 159(6): 2146-2162.e33, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32805281

RESUMEN

BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias Colorrectales/genética , Neoplasias Experimentales/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Aurora Quinasa B/metabolismo , Azoximetano/toxicidad , Carcinogénesis/genética , Línea Celular Tumoral , Colon/citología , Colon/patología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Análisis Citogenético , Dextranos/toxicidad , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Transgénicos , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Organoides , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética
8.
RNA Biol ; 18(sup1): 416-429, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34387142

RESUMEN

The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
9.
BMC Endocr Disord ; 21(1): 4, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413267

RESUMEN

BACKGROUND: Hypercalcemia of malignancy is relatively common in several cancers. However, in colorectal cancer, paraneoplastic phenomena that cause hypercalcemia is uncommon. In the few cases that are reported, secretion of parathyroid hormone-related peptide mediates the effect. We describe the first case of severe hypercalcemia mediated by intact parathyroid hormone secretion from a bone metastasis of colorectal origin. This was a diagnostic and therapeutic challenge. CASE PRESENTATION: A 68-year-old male treated for rectal adenocarcinoma 10 years earlier developed a bone metastasis. After initial treatment of the metastasis with surgery and irradiation, he developed a relapse with severe hypercalcemia and corresponding elevated parathyroid hormone levels. The workup showed no signs of parathyroid adenomas, but the metastasis produced intact parathyroid hormone. The hypercalcemia was successfully treated by irradiation and osteoclast inhibitor, and the patient received chemotherapy. Survival was 24 months from the onset of hypercalcemia. CONCLUSIONS: Proper diagnosis of the uncommon endocrine disturbance allowed targeted therapy and avoidance of neck exploration for wrongly suspecting primary hyperparathyroidism. Intact parathyroid hormone should be measured in cases of malignant hypercalcemia.


Asunto(s)
Adenocarcinoma/terapia , Neoplasias Óseas/terapia , Hipercalcemia/patología , Síndromes Paraneoplásicos/patología , Hormona Paratiroidea/sangre , Radioterapia/efectos adversos , Neoplasias del Recto/terapia , Procedimientos Quirúrgicos Operativos/efectos adversos , Adenocarcinoma/patología , Anciano , Neoplasias Óseas/secundario , Humanos , Hipercalcemia/sangre , Hipercalcemia/etiología , Masculino , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Síndromes Paraneoplásicos/sangre , Síndromes Paraneoplásicos/etiología , Pronóstico , Neoplasias del Recto/patología
10.
Gut ; 69(10): 1818-1831, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31988194

RESUMEN

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Asunto(s)
Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales , Neovascularización Patológica , ARN Largo no Codificante , Factor de Transcripción STAT3/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Terapia Genética , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pruebas de Farmacogenómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322643

RESUMEN

Breast cancer is the most common cancer among women worldwide. Although the five-, ten- and fifteen-year survival rates are good for breast cancer patients diagnosed with early-stage disease, some cancers recur many years after completion of primary therapy. Tumor heterogeneity and clonal evolution may lead to distant metastasis and therapy resistance, which are the main causes of breast cancer-associated deaths. In the clinic today, imaging techniques like mammography and tissue biopsies are used to diagnose breast cancer. Even though these methods are important in primary diagnosis, they have limitations when it comes to longitudinal monitoring of residual disease after treatment, disease progression, therapy responses, and disease recurrence. Over the last few years, there has been an increasing interest in the diagnostic, prognostic, and predictive potential of circulating cancer-derived material acquired through liquid biopsies in breast cancer. Thanks to the development of sensitive devices and platforms, a variety of tumor-derived material, including circulating cancer cells (CTCs), circulating DNA (ctDNA), and biomolecules encapsulated in extracellular vesicles, can now be extracted and analyzed from body fluids. Here we will review the most recent studies on breast cancer, demonstrating the clinical potential and utility of CTCs and ctDNA. We will also review literature illustrating the potential of circulating exosomal RNA and proteins as future biomarkers in breast cancer. Finally, we will discuss some of the advantages and limitations of liquid biopsies and the future perspectives of this field in breast cancer management.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Mama/patología , Exosomas/metabolismo , Humanos , Células Neoplásicas Circulantes/patología , Pronóstico
12.
J Biol Chem ; 293(49): 18965-18976, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30305397

RESUMEN

The long noncoding RNA (lncRNA) NEAT1 (nuclear enriched abundant transcript 1) is the architectural component of nuclear paraspeckles, and it has recently gained considerable attention as it is abnormally expressed in pathological conditions such as cancer and neurodegenerative diseases. NEAT1 and paraspeckle formation are increased in cells upon exposure to a variety of environmental stressors and believed to play an important role in cell survival. The present study was undertaken to further investigate the role of NEAT1 in cellular stress response pathways. We show that NEAT1 is a novel target gene of heat shock transcription factor 1 (HSF1) and is up-regulated when the heat shock response pathway is activated by sulforaphane (SFN) or elevated temperature. HSF1 binds specifically to a newly identified conserved heat shock element in the NEAT1 promoter. In line with this, SFN induced the formation of NEAT1-containing paraspeckles via an HSF1-dependent mechanism. HSF1 plays a key role in the cellular response to proteotoxic stress by promoting the expression of a series of genes, including those encoding molecular chaperones. We have found that the expression of HSP70, HSP90, and HSP27 is amplified and sustained during heat shock in NEAT1-depleted cells compared with control cells, indicating that NEAT1 feeds back via an unknown mechanism to regulate HSF1 activity. This interrelationship is potentially significant in human diseases such as cancer and neurodegenerative disorders.


Asunto(s)
Estructuras del Núcleo Celular/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , ARN Largo no Codificante/genética , Ribonucleoproteínas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico , Respuesta al Choque Térmico/genética , Humanos , Isotiocianatos/farmacología , Chaperonas Moleculares , Regiones Promotoras Genéticas , Ribonucleoproteínas/genética , Sulfóxidos , Regulación hacia Arriba
13.
Front Oncol ; 13: 1249895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111531

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for embryonic development and tissue regeneration, and aberrant EMT is associated with disease including cancer. The high degree of plasticity in the mammary epithelium is reflected in extensive heterogeneity among breast cancers. Here, we have analyzed RNA-sequencing data from three different mammary epithelial cell line-derived EMT models and identified a robust mammary EMT gene expression signature that separates breast cancers into distinct subgroups. Most strikingly, the basal-like breast cancers form two subgroups displaying partial-EMT and post-EMT gene expression patterns. We present evidence that key EMT-associated transcription factors play distinct roles at different stages of EMT in mammary epithelial cells.

14.
Mol Oncol ; 17(5): 713-717, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916500

RESUMEN

Accuracy and transparency of scientific data are becoming more and more relevant with the increasing concern regarding the evaluation of data reproducibility in many research areas. This concern is also true for quantifying coding and noncoding RNAs, with the remarkable increase in publications reporting RNA profiling and sequencing studies. To address the problem, we propose the following recommendations: (a) accurate documentation of experimental procedures in Materials and methods (and not only in the supplementary information, as many journals have a strict mandate for making Materials and methods as visible as possible in the main text); (b) submission of RT-qPCR raw data for all experiments reported; and (c) adoption of a unified, simple format for submitted RT-qPCR raw data. The Real-time PCR Data Essential Spreadsheet Format (RDES) was created for this purpose.


Asunto(s)
ARN , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reproducibilidad de los Resultados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
15.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37261908

RESUMEN

Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture-induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram- sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti-miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93-KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients.


Asunto(s)
MicroARNs , Sepsis , Humanos , Ratones , Animales , Anciano , Antagomirs , MicroARNs/genética , Inmunidad Adaptativa , Sepsis/patología
16.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36358747

RESUMEN

Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.

17.
Noncoding RNA ; 8(2)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35447887

RESUMEN

Many severe inflammation conditions are complement-dependent with the complement component C5a-C5aR1 axis as an important driver. At the RNA level, the blood transcriptome undergoes programmed expression of coding and long non-coding RNAs to combat invading microorganisms. Understanding the expression of long non-coding RNAs containing Alu elements in inflammation is important for reconstructing cell fate trajectories leading to severe disease. We have assembled a pipeline for computation mining of new Alu-containing long non-coding RNAs by intersecting immune genes with known Alu coordinates in the human genome. By applying the pipeline to patient bulk RNA-seq data with sepsis, we found immune genes containing 48 Alu insertion as robust candidates for further study. Interestingly, 1 of the 48 candidates was located within the complement system receptor gene C5aR1 and holds promise as a target for RNA therapeutics.

18.
Front Oncol ; 12: 868868, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494005

RESUMEN

Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-ß) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.

19.
Methods Mol Biol ; 2348: 175-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34160807

RESUMEN

Knockout (KO) of long non-coding RNAs (lncRNAs) enables functional characterization of this still poorly described group of transcripts. One of the most efficient and simplest methods to achieve complete KO of a lncRNA is by employing CRISPR/Cas gene editing. As most lncRNAs are not well annotated, their individual functional regions are often not defined, and the majority of the transcripts are not affected by single nucleotide mutations. Therefore, CRISPR/Cas KO is more challenging for lncRNAs as compared to KO of protein coding genes. Strategies for lncRNAs KO include complete removal of the entire gene, removal of the promoter and transcriptional start site, abolishing exon-exon junctions, or removing the transcriptional termination site. Here, we describe the methodology to perform CRISPR/Cas9 KO of lncRNAs in vitro using electroporation as the method of transfection of presynthesized single guide RNAs (sgRNAs) and Cas9 enzyme.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Silenciador del Gen , ARN Largo no Codificante/genética , Sitios de Unión , Electroporación , Técnicas de Silenciamiento del Gen , Marcación de Gen , Reacción en Cadena de la Polimerasa , Interferencia de ARN , ARN Guía de Kinetoplastida/genética
20.
J Clin Med ; 9(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142779

RESUMEN

One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA