Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165196

RESUMEN

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Gadus morhua/genética , Animales , Océano Atlántico , Ecosistema , Explotaciones Pesqueras , Gadus morhua/crecimiento & desarrollo , Genoma , Genómica , Humanos , Mar del Norte , Dinámica Poblacional
2.
Mol Ecol ; 31(9): 2562-2577, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229385

RESUMEN

Gene flow shapes spatial genetic structure and the potential for local adaptation. Among marine animals with nonmigratory adults, the presence or absence of a pelagic larval stage is thought to be a key determinant in shaping gene flow and the genetic structure of populations. In addition, the spatial distribution of suitable habitats is expected to influence the distribution of biological populations and their connectivity patterns. We used whole genome sequencing to study demographic history and reduced representation (double-digest restriction associated DNA) sequencing data to analyse spatial genetic structure in broadnosed pipefish (Syngnathus typhle). Its main habitat is eelgrass beds, which are patchily distributed along the study area in southern Norway. Demographic connectivity among populations was inferred from long-term (~30-year) population counts that uncovered a rapid decline in spatial correlations in abundance with distance as short as ~2 km. These findings were contrasted with data for two other fish species that have a pelagic larval stage (corkwing wrasse, Symphodus melops; black goby, Gobius niger). For these latter species, we found wider spatial scales of connectivity and weaker genetic isolation-by-distance patterns, except where both species experienced a strong barrier to gene flow, seemingly due to lack of suitable habitat. Our findings verify expectations that a fragmented habitat and absence of a pelagic larval stage promote genetic structure, while presence of a pelagic larvae stage increases demographic connectivity and gene flow, except perhaps over extensive habitat gaps.


Asunto(s)
Metagenómica , Perciformes , Animales , Demografía , Ecosistema , Peces/genética , Larva/genética , Perciformes/genética
3.
Proc Natl Acad Sci U S A ; 115(19): 4945-4950, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674450

RESUMEN

Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator FST , such as Wright's equation, FST ≈ 1/(4Nem + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the Ne /Nt ratio (where Ne is the effective and Nt is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased Ne /Nt and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of FST , particularly when genetic differentiation was low, FST ≈ 10-3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations.


Asunto(s)
Migración Animal , Gadus morhua/genética , Variación Genética , Modelos Genéticos , Selección Genética , Animales , Femenino , Masculino
4.
Mol Ecol ; 29(1): 160-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733084

RESUMEN

Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea-Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post-glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.


Asunto(s)
Peces/genética , Flujo Génico , Flujo Genético , Genoma/genética , Aislamiento Reproductivo , Animales , Demografía , Ecología , Europa (Continente) , Femenino , Peces/fisiología , Masculino
5.
Proc Natl Acad Sci U S A ; 114(34): 9152-9157, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784790

RESUMEN

Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.


Asunto(s)
ADN Antiguo/análisis , Ecosistema , Explotaciones Pesqueras/historia , Gadus morhua/genética , Animales , Regiones Árticas , Océano Atlántico , Huesos/metabolismo , ADN Antiguo/aislamiento & purificación , Fósiles , Geografía , Alemania , Historia Medieval , Noruega , Reino Unido
6.
Proc Biol Sci ; 286(1908): 20191167, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31362638

RESUMEN

While many in-laboratory ecotoxicological studies have shown the adverse impact of pollutants to the fitness of an individual, direct evidence from the field on the population dynamics of wildlife animals has been lacking. Here, we provide empirical support for a negative effect of pollution on Atlantic cod (Gadus morhua) population dynamics in coastal waters of Norway by combining unique time series of juvenile cod abundance, body size, environmental concentration of toxic contaminants and a spatially structured population dynamics model. The study shows that mercury concentration might have decreased the reproductive potential of cod in the region despite the general decline in the environmental concentration of mercury, cadmium and hexachlorobenzene since the implementation of national environmental laws. However, some cod populations appeared to be more resistant to mercury pollution than others, and the strength and shape of mercury effect on cod reproductive potential was fjord-specific. Additionally, cod growth rate changed at scales smaller than fjords with a gradient related to the exposure to the open ocean and offshore cod. These spatial differences in life-history traits emphasize the importance of local adaptation in shaping the dynamics of local wildlife populations. Finally, this study highlights the possibility to mitigate pollution effects on natural populations by reducing the overall pollution level, but also reveals that pollution reduction alone is not enough to rebuild local cod populations. Cod population recovery probably requires complementary efforts on fishing regulation and habitat restoration.


Asunto(s)
Exposición a Riesgos Ambientales , Gadus morhua/fisiología , Contaminantes Químicos del Agua/efectos adversos , Animales , Estuarios , Noruega , Dinámica Poblacional
7.
Mol Ecol ; 28(6): 1394-1411, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30633410

RESUMEN

Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole-genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord-type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord-type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.


Asunto(s)
Inversión Cromosómica/genética , Gadus morhua/genética , Flujo Génico/genética , Selección Genética/genética , Animales , Flujo Genético , Aptitud Genética/fisiología , Variación Genética/genética , Homocigoto , Aislamiento Reproductivo , Simpatría/genética
8.
Genomics ; 110(6): 399-403, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29665418

RESUMEN

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50 = 461,652 bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.


Asunto(s)
Genética de Población , Genoma , Perciformes/genética , Animales , Masculino , Análisis de Secuencia de ADN
9.
Mol Ecol ; 26(17): 4452-4466, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626905

RESUMEN

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Gadus morhua/genética , Flujo Génico , Animales , Océano Atlántico , Estuarios , Reordenamiento Génico , Genoma , Polimorfismo de Nucleótido Simple , Países Escandinavos y Nórdicos
10.
J Anim Ecol ; 86(4): 888-898, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28393352

RESUMEN

Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations.


Asunto(s)
Ambiente , Gadus morhua , Modelos Teóricos , Distribución Animal , Animales , Peces , Noruega , Dinámica Poblacional
11.
Glob Chang Biol ; 22(3): 1155-67, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26238690

RESUMEN

In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics difficult - especially when attempting to understand species composition changes against a backdrop of climate and ecological variability. Here, we present an analysis of a community of juvenile nearshore fishes based on nearly 8 decades of highly standardized Norwegian survey records. Using multivariate statistical techniques, we: (i) characterize the change in taxonomic community composition through time, (ii) determine whether there has been an increase in warm-water affinity species relative to their cold water affinity counterparts, and (iii) characterize the temporal change in the species' functional trait assemblage. Our results strongly indicate a shift toward a novel fish assemblage between the late 1990s and 2000s. The context of changes within the most recent two decades is in stark contrast to those during the 1960s and 1970s, but similar to those during the previous warm period during the 1930s and 1940s. This novel assemblage is tightly linked to the warming temperatures in the region portrayed by the increased presence of warm-water species and a higher incidence of pelagic, planktivorous species. The results indicate a clear influence of ocean temperature on the region's juvenile fish community that points to climate-mediated effects on the species assemblages of an important fish nursery area.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Peces/fisiología , Animales , Noruega , Dinámica Poblacional , Factores de Tiempo
12.
J Anim Ecol ; 85(3): 628-37, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26476092

RESUMEN

Habitat selection is a complex process, which involves behavioural decisions guided by the multiple needs and constraints faced by individuals. Climate-induced changes in environmental conditions may alter those trade-offs and resulting habitat use patterns. In this study, we investigated the effect of sea temperature on habitat selection and habitat use of acoustically tagged Atlantic cod (Gadus morhua) at the Norwegian Skagerrak coast. Significant relationships between ocean temperature and habitat selection and use were found. Under favourable sea temperature thresholds (<16 °C), cod selected vegetated habitats, such as eelgrass and macroalgae beds, available in shallow areas. Selection for those habitats was especially high at night, when cod tended to ascend to shallower areas, presumably to feed. Selection and use of those habitats decreased significantly as temperature rose. Under increased sea surface temperature conditions, cod were absent from vegetated shallow habitats, both during the day and night, and selected instead non-vegetated rocky bottoms and sand habitats, available in deeper, colder areas. This study shows the dynamic nature of habitat selection and strongly suggests that cod in this region have to trade off food availability against favourable temperature conditions. Future increases in ocean temperature are expected to further influence the spatial behaviour of marine fish, potentially affecting individual fitness and population dynamics.


Asunto(s)
Ecosistema , Gadus morhua/fisiología , Temperatura , Animales , Noruega , Océanos y Mares
13.
Mol Ecol ; 24(24): 6061-79, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26547144

RESUMEN

Knowledge of the mechanisms limiting connectivity and gene flow in deep-sea ecosystems is scarce, especially for deep-sea sharks. The Portuguese dogfish (Centroscymnus coelolepis) is a globally distributed and near threatened deep-sea shark. C. coelolepis population structure was studied using 11 nuclear microsatellite markers and a 497-bp fragment from the mtDNA control region. High levels of genetic homogeneity across the Atlantic (Φ(ST) = -0.0091, F(ST) = 0.0024, P > 0.05) were found suggesting one large population unit at this basin. The low levels of genetic divergence between Atlantic and Australia (Φ(ST) = 0.0744, P < 0.01; F(ST) = 0.0015, P > 0.05) further suggested that this species may be able to maintain some degree of genetic connectivity even across ocean basins. In contrast, sharks from the Mediterranean Sea exhibited marked genetic differentiation from all other localities studied (Φ(ST) = 0.3808, F(ST) = 0.1149, P < 0.001). This finding suggests that the shallow depth of the Strait of Gibraltar acts as a barrier to dispersal and that isolation and genetic drift may have had an important role shaping the Mediterranean shark population over time. Analyses of life history traits allowed the direct comparison among regions providing a complete characterization of this shark's populations. Sharks from the Mediterranean had markedly smaller adult body size and size at maturity compared to Atlantic and Pacific individuals. Together, these results suggest the existence of an isolated and unique population of C. coelolepis inhabiting the Mediterranean that most likely became separated from the Atlantic in the late Pleistocene.


Asunto(s)
Evolución Biológica , Flujo Génico , Genética de Población , Tiburones/genética , Animales , Océano Atlántico , ADN Mitocondrial/genética , Femenino , Genotipo , Masculino , Mar Mediterráneo , Repeticiones de Microsatélite , Océano Pacífico , Análisis de Secuencia de ADN
14.
Proc Natl Acad Sci U S A ; 108(5): 1961-6, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245301

RESUMEN

Understanding how populations respond to changes in climate requires long-term, high-quality datasets, which are rare for marine systems. We estimated the effects of climate warming on cod lengths and length variability using a unique 91-y time series of more than 100,000 individual juvenile cod lengths from surveys that began in 1919 along the Norwegian Skagerrak coast. Using linear mixed-effects models, we accounted for spatial population structure and the nested structure of the survey data to reveal opposite effects of spring and summer warming on juvenile cod lengths. Warm summer temperatures in the coastal Skagerrak have limited juvenile growth. In contrast, warmer springs have resulted in larger juvenile cod, with less variation in lengths within a cohort, possibly because of a temperature-driven contraction in the spring spawning period. A density-dependent reduction in length was evident only at the highest population densities in the time series, which have rarely been observed in the last decade. If temperatures rise because of global warming, nonlinearities in the opposing temperature effects suggest that negative effects of warmer summers will increasingly outweigh positive effects of warmer springs, and the coastal Skagerrak will become ill-suited for Atlantic cod.


Asunto(s)
Tamaño Corporal , Clima , Gadus morhua , Animales , Noruega , Densidad de Población
15.
Evol Appl ; 17(5): e13704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770102

RESUMEN

Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.

16.
Proc Biol Sci ; 280(1754): 20122679, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23303544

RESUMEN

Marine protected areas (MPAs) are increasingly implemented as tools to conserve and manage fisheries and target species. Because there are opportunity costs to conservation, there is a need for science-based assessment of MPAs. Here, we present one of the northernmost documentations of MPA effects to date, demonstrated by a replicated before-after control-impact (BACI) approach. In 2006, MPAs were implemented along the Norwegian Skagerrak coast offering complete protection to shellfish and partial protection to fish. By 2010, European lobster (Homarus gammarus) catch-per-unit-effort (CPUE) had increased by 245 per cent in MPAs, whereas CPUE in control areas had increased by 87 per cent. Mean size of lobsters increased by 13 per cent in MPAs, whereas increase in control areas was negligible. Furthermore, MPA-responses and population development in control areas varied significantly among regions. This illustrates the importance of a replicated BACI design for reaching robust conclusions and management decisions. Partial protection of Atlantic cod (Gadus morhua) was followed by an increase in population density and body size compared with control areas. By 2010, MPA cod were on average 5 cm longer than in any of the control areas. MPAs can be useful management tools in rebuilding and conserving portions of depleted lobster populations in northern temperate waters, and even for a mobile temperate fish species such as the Atlantic cod.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Explotaciones Pesqueras/métodos , Gadus morhua/crecimiento & desarrollo , Nephropidae/crecimiento & desarrollo , Animales , Tamaño Corporal , Noruega
17.
Ecol Evol ; 13(12): e10745, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38077503

RESUMEN

The absence of functional top predators has been proposed as a mechanism acting to shape fish assemblages in temperate marine ecosystems, with cascading effects on lower trophic levels. We explore this scenario by comparing the trophic and functional status of fish assemblages in Norwegian marine national parks, open to fishing, to a nearby coastal seascape that harbors a system of marine protected areas (MPAs) including a no-take zone. Demersal fish assemblages were sampled using fyke nets over three consecutive seasons. Atlantic cod (Gadus morhua) is potentially a dominant top predator in this ecosystem, and historically, this and other gadids have been targeted by the full range of former and present fisheries. In the present study, we find that average body size of the Atlantic cod was significantly larger in the zoned seascape compared to the unprotected areas (mean ± SD: 36.6 cm ± 14.38 vs. 23.4 ± 7.50; p < .001) and that the unprotected seascape was characterized by a higher abundance of mesopredator fish species. These observations are consistent with the hypothesis that the protection of top predators within MPAs aids to control the mesopredator populations and provides empirical support to the notion that the present state of many coastal fish assemblages is driven by mesopredator release linked to functional depletion of large top predators.

18.
Evol Appl ; 16(7): 1359-1376, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37492148

RESUMEN

Range expansions can lead to increased contact of divergent populations, thus increasing the potential of hybridization events. Whether viable hybrids are produced will most likely depend on the level of genomic divergence and associated genomic incompatibilities between the different entities as well as environmental conditions. By taking advantage of historical Baltic cod (Gadus morhua) otolith samples combined with genotyping and whole genome sequencing, we here investigate the genetic impact of the increased spawning stock biomass of the eastern Baltic cod stock in the mid 1980s. The eastern Baltic cod is genetically highly differentiated from the adjacent western Baltic cod and locally adapted to the brackish environmental conditions in the deeper Eastern basins of the Baltic Sea unsuitable for its marine counterparts. Our genotyping results show an increased proportion of eastern Baltic cod in western Baltic areas (Mecklenburg Bay and Arkona Basin)-indicative of a range expansion westwards-during the peak population abundance in the 1980s. Additionally, we detect high frequencies of potential hybrids (including F1, F2 and backcrosses), verified by whole genome sequencing data for a subset of individuals. Analysis of mitochondrial genomes further indicates directional gene flow from eastern Baltic cod males to western Baltic cod females. Our findings unravel that increased overlap in distribution can promote hybridization between highly divergent populations and that the hybrids can be viable and survive under specific and favourable environmental conditions. However, the observed hybridization had seemingly no long-lasting impact on the continuous separation and genetic differentiation between the unique Baltic cod stocks.

19.
Integr Comp Biol ; 62(6): 1784-1801, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36130874

RESUMEN

Temperature profoundly affects ectotherm physiology. Although differential thermal responses influence fitness, thus driving population dynamics and species distributions, our understanding of the molecular architecture underlying these responses is limited, especially during the critical larval stage. Here, using RNA-sequencing of laboratory-reared Atlantic cod (Gadus morhua) larvae of wild origin, we find changes in gene expression in thousands of transcripts consistent with a severe cellular stress response at both ambient and projected (+2°C and +4°C) temperatures. In addition, specific responses to stress, heat, and hypoxia were commonly identified in gene ontology enrichment analyses and 33 of the 44 genes comprising the minimum stress proteome of all organisms were upregulated. Earlier onset of the stress response was evident at higher temperatures; concomitant increased growth and mortality suggests a reduction in fitness. Temporal differences in gene expression levels do not correspond to differences in growing degree days, suggesting negative physiological consequences of warming beyond accelerated development. Because gene expression is costly, we infer that the upregulation of thousands of transcripts in response to warming in larval cod might act as an energetic drain. We hypothesize that the energetically costly stress response, coupled with increased growth rate at warmer temperatures, leads to faster depletion of energy reserves and increased risk of mortality in larval cod. As sea surface temperatures continue to rise over the next century, reduced fitness of Atlantic cod larvae might lead to population declines in this ecologically and socioeconomically important species. Further, our findings expand our understanding of transcriptomic responses to temperature by ectothermic vertebrate larvae beyond the critical first-feeding stage, a time when organisms begin balancing the energetic demands of growth, foraging, development, and maintenance. Linking the molecular basis of a thermal response to key fitness-related traits is fundamentally important to predicting how global warming will affect ectotherms.


Asunto(s)
Gadus morhua , Condicionamiento Físico Animal , Animales , Gadus morhua/genética , Larva , Temperatura , Calor
20.
Evol Appl ; 15(7): 1162-1176, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899259

RESUMEN

Identifying how physical and biotic factors shape genetic connectivity among populations in time and space is essential to our understanding of the evolutionary trajectory as well as the management of marine species. Atlantic cod is a widespread and commercially important marine species displaying several ecotypes with different life history strategies. Using three sets of SNPs: neutral, informative, and genome-inversion linked, we studied population genetic structure of ~2500 coastal Atlantic cod (CC) from 40 locations along Norway's 2500 km coastline, including nine fjords. We observed: (1) a genetic cline, suggesting a mechanism of isolation by distance, characterized by a declining F ST between CC and North East Arctic Cod (NEAC-genetically distinct migratory ecotype) with increasing latitude, (2) that in the north, samples of CC from outer-fjord areas were genetically more similar to NEAC than were samples of CC from their corresponding inner-fjord areas, (3) greater population genetic differentiation among CC sampled from outer-fjord areas along the coast, than among CC sampled from their corresponding inner-fjord areas, (4) genetic differentiation among samples of CC from both within and among fjords. Collectively, these results permit us to draw two main conclusions. First, that differences in the relative presence of the genetically highly distinct, migratory ecotype NEAC, declining from north to south and from outer to inner fjord, plays the major role in driving population genetic structure of the Norwegian CC. Second, that there is limited connectivity between CC from different fjords. These results suggest that the current management units implemented for this species in Norway should be divided into smaller entities. Furthermore, the situation where introgression from one ecotype drives population genetic structure of another, as is the case here, may exist in other species and geographical regions, thus creating additional challenges for sustainable fisheries management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA